hybrid dis-con action, save-load, converge wad observed

add discrete and continuous action in same NN model.
model save and load.
reward is increasing, converge was observed.

this two models are seems good:
Aimbot_9331_1667423213_hybrid_train2
Aimbot_9331_1667389873_hybrid
This commit is contained in:
Koha9 2022-11-03 07:16:18 +09:00
parent 0dbe2013ae
commit 474032d1e8
3 changed files with 264 additions and 62 deletions

View File

@ -48,6 +48,11 @@ class Aimbot(gym.Env):
self.unity_discrete_type = self.unity_action_spec.discrete_size
# environment discrete action type. int 3+3+2=8
self.unity_discrete_size = sum(self.unity_discrete_branches)
# environment total action size. int 3+2=5
self.unity_action_size = self.unity_discrete_type + self.unity_continuous_size
# ActionExistBool
self.unity_dis_act_exist = self.unity_discrete_type != 0
self.unity_con_act_exist = self.unity_continuous_size != 0
# AGENT SPECS
# all agents ID
@ -85,21 +90,23 @@ class Aimbot(gym.Env):
"""
# take action to enviroment
# return mextState,reward,done
if self.unity_discrete_size == 0:
# discrete action
if self.unity_dis_act_exist:
# create discrete action from actions list
discreteActions = actions[:, 0 : self.unity_discrete_type]
else:
# create empty discrete action
discreteActions = np.asarray([[0]])
# continuous action
if self.unity_con_act_exist:
# create continuous actions from actions list
continuousActions = actions[:, self.unity_discrete_type :]
else:
# create discrete action from actions list
discreteActions = actions[:, 0 : self.unity_discrete_size]
"""
if self.unity_continuous_size == 0:
# create empty continuous action
continuousActions = np.asanyarray([[0.0]])
else:
# create continuous actions from actions list
continuousActions = actions[:,self.unity_discrete_size :]
"""
continuousActions = np.asanyarray([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]])
# Dummy continuous action
# continuousActions = np.asanyarray([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]])
# create actionTuple
thisActionTuple = ActionTuple(continuous=continuousActions, discrete=discreteActions)
# take action to env

View File

@ -20,12 +20,12 @@ WORKER_ID = 1
BASE_PORT = 2002
LEARNING_RATE = 2e-3
LEARNING_RATE = 7e-4
GAMMA = 0.99
GAE_LAMBDA = 0.95
TOTAL_STEPS = 2000000
STEP_NUM = 128
MINIBATCH_NUM = 4
STEP_NUM = 256
MINIBATCH_NUM = 1
EPOCHS = 4
CLIP_COEF = 0.1
ENTROPY_COEF = 0.01
@ -35,9 +35,13 @@ ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = True
WANDB_TACK = True
LOAD_DIR = "../PPO-Model/SmallArea-256-128-hybrid.pt"
def parse_args():
# fmt: off
# pytorch and environment parameters
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
help="seed of the experiment")
@ -54,6 +58,7 @@ def parse_args():
parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
help="total timesteps of the experiments")
# model parameters
parser.add_argument("--stepNum", type=int, default=STEP_NUM,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--minibatchesNum", type=int, default=MINIBATCH_NUM,
@ -62,8 +67,13 @@ def parse_args():
help="the K epochs to update the policy")
parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--wandb-entity", type=str, default=None,
parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
help="track on the wandb")
parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
help="the entity (team) of wandb's project")
parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
help="load model directory")
# GAE
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
@ -101,16 +111,17 @@ class PPOAgent(nn.Module):
super(PPOAgent, self).__init__()
self.discrete_size = env.unity_discrete_size
self.discrete_shape = list(env.unity_discrete_branches)
self.continuous_size = env.unity_continuous_size
self.network = nn.Sequential(
layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 128)),
nn.Tanh(),
layer_init(nn.Linear(128, 128)),
layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 256)),
nn.ReLU(),
layer_init(nn.Linear(128, 128)),
layer_init(nn.Linear(256, 128)),
nn.ReLU(),
)
self.dis_Actor = layer_init(nn.Linear(128, self.discrete_size), std=0.01)
self.actor_dis = layer_init(nn.Linear(128, self.discrete_size), std=0.01)
self.actor_mean = layer_init(nn.Linear(128, self.continuous_size), std=0.01)
self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))
self.critic = layer_init(nn.Linear(128, 1), std=1)
def get_value(self, state: torch.Tensor):
@ -118,16 +129,35 @@ class PPOAgent(nn.Module):
def get_actions_value(self, state: torch.Tensor, actions=None):
hidden = self.network(state)
dis_logits = self.dis_Actor(hidden)
# discrete
dis_logits = self.actor_dis(hidden)
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
# continuous
actions_mean = self.actor_mean(hidden)
action_logstd = self.actor_logstd.expand_as(actions_mean)
action_std = torch.exp(action_logstd)
con_probs = Normal(actions_mean, action_std)
if actions is None:
actions = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
log_prob = torch.stack(
[ctgr.log_prob(act) for act, ctgr in zip(actions, multi_categoricals)]
disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
conAct = con_probs.sample()
actions = torch.cat([disAct.T, conAct], dim=1)
else:
disAct = actions[:, 0 : env.unity_discrete_type].T
conAct = actions[:, env.unity_discrete_type :]
dis_log_prob = torch.stack(
[ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]
)
dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
return (
actions,
dis_log_prob.sum(0),
dis_entropy.sum(0),
con_probs.log_prob(conAct).sum(1),
con_probs.entropy().sum(1),
self.critic(hidden),
)
entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
return actions.T, log_prob.sum(0), entropy.sum(0), self.critic(hidden)
if __name__ == "__main__":
@ -140,21 +170,28 @@ if __name__ == "__main__":
# Initialize environment anget optimizer
env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport)
agent = PPOAgent(env).to(device)
if args.load_dir is None:
agent = PPOAgent(env).to(device)
else:
agent = torch.load(args.load_dir)
print("Load Agent", args.load_dir)
print(agent.eval())
optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5)
# Tensorboard and WandB Recorder
game_name = "Aimbot"
run_name = f"{game_name}__{args.seed}__{int(time.time())}"
wandb.init(
project=run_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
if args.wandb_track:
wandb.init(
project=run_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
@ -165,10 +202,9 @@ if __name__ == "__main__":
# Memory Record
obs = torch.zeros((args.stepNum, env.unity_agent_num) + env.unity_observation_shape).to(device)
actions = torch.zeros((args.stepNum, env.unity_agent_num) + (env.unity_discrete_type,)).to(
device
)
logprobs = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
actions = torch.zeros((args.stepNum, env.unity_agent_num) + (env.unity_action_size,)).to(device)
dis_logprobs = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
con_logprobs = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
rewards = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
dones = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
values = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
@ -198,13 +234,14 @@ if __name__ == "__main__":
with torch.no_grad():
# predict actions
action, logprob, _, value = agent.get_actions_value(next_obs)
action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value(next_obs)
value = value.flatten()
next_obs, reward, done = env.step(action.cpu().numpy())
# save memories
actions[step] = action
logprobs[step] = logprob
dis_logprobs[step] = dis_logprob
con_logprobs[step] = con_logprob
values[step] = value
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
@ -241,15 +278,16 @@ if __name__ == "__main__":
# flatten the batch
b_obs = obs.reshape((-1,) + env.unity_observation_shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + (env.unity_discrete_type,))
b_dis_logprobs = dis_logprobs.reshape(-1)
b_con_logprobs = con_logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + (env.unity_action_size,))
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
#clipfracs = []
for epoch in range(args.epochs):
# shuffle all datasets
np.random.shuffle(b_inds)
@ -264,26 +302,42 @@ if __name__ == "__main__":
mb_advantages.std() + 1e-8
)
# ratio
_, newlogprob, entropy, newvalue = agent.get_actions_value(
b_obs[mb_inds], b_actions.long()[mb_inds].T
)
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
(
_,
new_dis_logprob,
dis_entropy,
new_con_logprob,
con_entropy,
newvalue,
) = agent.get_actions_value(b_obs[mb_inds], b_actions[mb_inds])
# discrete ratio
dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
dis_ratio = dis_logratio.exp()
# continuous ratio
con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
con_ratio = con_logratio.exp()
"""
# early stop
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
"""
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(
ratio, 1 - args.clip_coef, 1 + args.clip_coef
# discrete Policy loss
dis_pg_loss_orig = -mb_advantages * dis_ratio
dis_pg_loss_clip = -mb_advantages * torch.clamp(
dis_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
# continuous Policy loss
con_pg_loss_orig = -mb_advantages * con_ratio
con_pg_loss_clip = -mb_advantages * torch.clamp(
con_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()
# Value loss
newvalue = newvalue.view(-1)
@ -300,8 +354,14 @@ if __name__ == "__main__":
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.critic_coef
# total loss
entropy_loss = dis_entropy.mean() + con_entropy.mean()
loss = (
dis_pg_loss
+ con_pg_loss
- entropy_loss * args.ent_coef
+ v_loss * args.critic_coef
)
optimizer.zero_grad()
loss.backward()
@ -309,19 +369,26 @@ if __name__ == "__main__":
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
"""
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
"""
# record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/dis_policy_loss", dis_pg_loss.item(), global_step)
writer.add_scalar("losses/con_policy_loss", con_pg_loss.item(), global_step)
writer.add_scalar("losses/total_loss", loss.item(), global_step)
writer.add_scalar("losses/entropy_loss", entropy_loss.item(), global_step)
# writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
# writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
#writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
writer.add_scalar(
"charts/Reward", np.mean(rewards.to("cpu").detach().numpy().copy()), global_step
)
env.close()
writer.close()

View File

@ -303,6 +303,134 @@
"(128, 4) + env.unity_observation_shape\n",
"env.reset()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[1, 2, 3],\n",
" [1, 2, 3],\n",
" [1, 2, 3],\n",
" [1, 2, 3]], device='cuda:0')\n",
"tensor([[1],\n",
" [2],\n",
" [3],\n",
" [4]], device='cuda:0')\n"
]
},
{
"data": {
"text/plain": [
"tensor([[1, 2, 3, 1],\n",
" [1, 2, 3, 2],\n",
" [1, 2, 3, 3],\n",
" [1, 2, 3, 4]], device='cuda:0')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"aa = torch.tensor([[1,2,3],[1,2,3],[1,2,3],[1,2,3]]).to(\"cuda:0\")\n",
"bb = torch.tensor([[1],[2],[3],[4]]).to(\"cuda:0\")\n",
"print(aa)\n",
"print(bb)\n",
"torch.cat([aa,bb],axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "Can't get attribute 'PPOAgent' on <module '__main__'>",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_31348\\1930153251.py\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmymodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"../PPO-Model/SmallArea-256-128-hybrid.pt\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mmymodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0meval\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mc:\\Users\\UCUNI\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mload\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m 710\u001b[0m \u001b[0mopened_file\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mseek\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0morig_position\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 711\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mjit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopened_file\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 712\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_load\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopened_zipfile\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmap_location\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpickle_module\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mpickle_load_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 713\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0m_legacy_load\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopened_file\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmap_location\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpickle_module\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mpickle_load_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 714\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mc:\\Users\\UCUNI\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36m_load\u001b[1;34m(zip_file, map_location, pickle_module, pickle_file, **pickle_load_args)\u001b[0m\n\u001b[0;32m 1047\u001b[0m \u001b[0munpickler\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mUnpicklerWrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata_file\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mpickle_load_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1048\u001b[0m \u001b[0munpickler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpersistent_load\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpersistent_load\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1049\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0munpickler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1050\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1051\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_utils\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_validate_loaded_sparse_tensors\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mc:\\Users\\UCUNI\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mfind_class\u001b[1;34m(self, mod_name, name)\u001b[0m\n\u001b[0;32m 1040\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1041\u001b[0m \u001b[0mmod_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_module_mapping\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmod_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmod_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1042\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfind_class\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmod_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1043\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1044\u001b[0m \u001b[1;31m# Load the data (which may in turn use `persistent_load` to load tensors)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mAttributeError\u001b[0m: Can't get attribute 'PPOAgent' on <module '__main__'>"
]
}
],
"source": [
"import torch\n",
"\n",
"def layer_init(layer, std=np.sqrt(2), bias_const=0.0):\n",
" torch.nn.init.orthogonal_(layer.weight, std)\n",
" torch.nn.init.constant_(layer.bias, bias_const)\n",
" return layer\n",
"\n",
"class PPOAgent(nn.Module):\n",
" def __init__(self, env: Aimbot):\n",
" super(PPOAgent, self).__init__()\n",
" self.discrete_size = env.unity_discrete_size\n",
" self.discrete_shape = list(env.unity_discrete_branches)\n",
" self.continuous_size = env.unity_continuous_size\n",
"\n",
" self.network = nn.Sequential(\n",
" layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 256)),\n",
" nn.ReLU(),\n",
" layer_init(nn.Linear(256, 128)),\n",
" nn.ReLU(),\n",
" )\n",
" self.actor_dis = layer_init(nn.Linear(128, self.discrete_size), std=0.01)\n",
" self.actor_mean = layer_init(nn.Linear(128, self.continuous_size), std=0.01)\n",
" self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))\n",
" self.critic = layer_init(nn.Linear(128, 1), std=1)\n",
"\n",
" def get_value(self, state: torch.Tensor):\n",
" return self.critic(self.network(state))\n",
"\n",
" def get_actions_value(self, state: torch.Tensor, actions=None):\n",
" hidden = self.network(state)\n",
" # discrete\n",
" dis_logits = self.actor_dis(hidden)\n",
" split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)\n",
" multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]\n",
" # continuous\n",
" actions_mean = self.actor_mean(hidden)\n",
" action_logstd = self.actor_logstd.expand_as(actions_mean)\n",
" action_std = torch.exp(action_logstd)\n",
" con_probs = Normal(actions_mean, action_std)\n",
"\n",
" if actions is None:\n",
" disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])\n",
" conAct = con_probs.sample()\n",
" actions = torch.cat([disAct.T, conAct], dim=1)\n",
" else:\n",
" disAct = actions[:, 0 : env.unity_discrete_type].T\n",
" conAct = actions[:, env.unity_discrete_type :]\n",
" dis_log_prob = torch.stack(\n",
" [ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]\n",
" )\n",
" dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])\n",
" return (\n",
" actions,\n",
" dis_log_prob.sum(0),\n",
" dis_entropy.sum(0),\n",
" con_probs.log_prob(conAct).sum(1),\n",
" con_probs.entropy().sum(1),\n",
" self.critic(hidden),\n",
" )\n",
"\n",
"\n",
"mymodel = torch.load(\"../PPO-Model/SmallArea-256-128-hybrid.pt\")\n",
"mymodel.eval()"
]
}
],
"metadata": {