Aimbot-PPO/Aimbot-PPO-Python/Pytorch/ppo.py
Koha9 474032d1e8 hybrid dis-con action, save-load, converge wad observed
add discrete and continuous action in same NN model.
model save and load.
reward is increasing, converge was observed.

this two models are seems good:
Aimbot_9331_1667423213_hybrid_train2
Aimbot_9331_1667389873_hybrid
2022-11-03 07:16:18 +09:00

395 lines
17 KiB
Python

import argparse
import wandb
import time
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
from AimbotEnv import Aimbot
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from distutils.util import strtobool
from torch.utils.tensorboard import SummaryWriter
DEFAULT_SEED = 9331
ENV_PATH = "../Build-ParallelEnv/Aimbot-ParallelEnv"
WAND_ENTITY = "koha9"
WORKER_ID = 1
BASE_PORT = 2002
LEARNING_RATE = 7e-4
GAMMA = 0.99
GAE_LAMBDA = 0.95
TOTAL_STEPS = 2000000
STEP_NUM = 256
MINIBATCH_NUM = 1
EPOCHS = 4
CLIP_COEF = 0.1
ENTROPY_COEF = 0.01
CRITIC_COEF = 0.5
ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = True
WANDB_TACK = True
LOAD_DIR = "../PPO-Model/SmallArea-256-128-hybrid.pt"
def parse_args():
# fmt: off
# pytorch and environment parameters
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
help="seed of the experiment")
parser.add_argument("--path", type=str, default=ENV_PATH,
help="enviroment path")
parser.add_argument("--workerID", type=int, default=WORKER_ID,
help="unity worker ID")
parser.add_argument("--baseport", type=int, default=BASE_PORT,
help="port to connect to Unity environment")
parser.add_argument("--lr", type=float, default=LEARNING_RATE,
help="the learning rate of optimizer")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
help="total timesteps of the experiments")
# model parameters
parser.add_argument("--stepNum", type=int, default=STEP_NUM,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--minibatchesNum", type=int, default=MINIBATCH_NUM,
help="the number of mini-batches")
parser.add_argument("--epochs", type=int, default=EPOCHS,
help="the K epochs to update the policy")
parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
help="track on the wandb")
parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
help="the entity (team) of wandb's project")
parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
help="load model directory")
# GAE
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=NORM_ADV, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--gamma", type=float, default=GAMMA,
help="the discount factor gamma")
parser.add_argument("--gaeLambda", type=float, default=GAE_LAMBDA,
help="the lambda for the general advantage estimation")
parser.add_argument("--clip-coef", type=float, default=CLIP_COEF,
help="the surrogate clipping coefficient")
parser.add_argument("--ent-coef", type=float, default=ENTROPY_COEF,
help="coefficient of the entropy")
parser.add_argument("--critic-coef", type=float, default=CRITIC_COEF,
help="coefficient of the value function")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=CLIP_VLOSS, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
# fmt: on
args = parser.parse_args()
return args
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class PPOAgent(nn.Module):
def __init__(self, env: Aimbot):
super(PPOAgent, self).__init__()
self.discrete_size = env.unity_discrete_size
self.discrete_shape = list(env.unity_discrete_branches)
self.continuous_size = env.unity_continuous_size
self.network = nn.Sequential(
layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 256)),
nn.ReLU(),
layer_init(nn.Linear(256, 128)),
nn.ReLU(),
)
self.actor_dis = layer_init(nn.Linear(128, self.discrete_size), std=0.01)
self.actor_mean = layer_init(nn.Linear(128, self.continuous_size), std=0.01)
self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))
self.critic = layer_init(nn.Linear(128, 1), std=1)
def get_value(self, state: torch.Tensor):
return self.critic(self.network(state))
def get_actions_value(self, state: torch.Tensor, actions=None):
hidden = self.network(state)
# discrete
dis_logits = self.actor_dis(hidden)
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
# continuous
actions_mean = self.actor_mean(hidden)
action_logstd = self.actor_logstd.expand_as(actions_mean)
action_std = torch.exp(action_logstd)
con_probs = Normal(actions_mean, action_std)
if actions is None:
disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
conAct = con_probs.sample()
actions = torch.cat([disAct.T, conAct], dim=1)
else:
disAct = actions[:, 0 : env.unity_discrete_type].T
conAct = actions[:, env.unity_discrete_type :]
dis_log_prob = torch.stack(
[ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]
)
dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
return (
actions,
dis_log_prob.sum(0),
dis_entropy.sum(0),
con_probs.log_prob(conAct).sum(1),
con_probs.entropy().sum(1),
self.critic(hidden),
)
if __name__ == "__main__":
args = parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# Initialize environment anget optimizer
env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport)
if args.load_dir is None:
agent = PPOAgent(env).to(device)
else:
agent = torch.load(args.load_dir)
print("Load Agent", args.load_dir)
print(agent.eval())
optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5)
# Tensorboard and WandB Recorder
game_name = "Aimbot"
run_name = f"{game_name}__{args.seed}__{int(time.time())}"
if args.wandb_track:
wandb.init(
project=run_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s"
% ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# Memory Record
obs = torch.zeros((args.stepNum, env.unity_agent_num) + env.unity_observation_shape).to(device)
actions = torch.zeros((args.stepNum, env.unity_agent_num) + (env.unity_action_size,)).to(device)
dis_logprobs = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
con_logprobs = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
rewards = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
dones = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
values = torch.zeros((args.stepNum, env.unity_agent_num)).to(device)
# TRY NOT TO MODIFY: start the game
args.batch_size = int(env.unity_agent_num * args.stepNum)
args.minibatch_size = int(args.batch_size // args.minibatchesNum)
total_update_step = args.total_timesteps // args.batch_size
global_step = 0
start_time = time.time()
next_obs, _, _ = env.reset()
next_obs = torch.Tensor(next_obs).to(device)
next_done = torch.zeros(env.unity_agent_num).to(device)
for total_steps in range(total_update_step):
# discunt learning rate, while step == total_update_step lr will be 0
if args.annealLR:
frac = 1.0 - (total_steps - 1.0) / total_update_step
lrnow = frac * args.lr
optimizer.param_groups[0]["lr"] = lrnow
# MAIN LOOP: run agent in environment
for step in range(args.stepNum):
global_step += 1 * env.unity_agent_num
obs[step] = next_obs
dones[step] = next_done
with torch.no_grad():
# predict actions
action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value(next_obs)
value = value.flatten()
next_obs, reward, done = env.step(action.cpu().numpy())
# save memories
actions[step] = action
dis_logprobs[step] = dis_logprob
con_logprobs[step] = con_logprob
values[step] = value
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
# GAE
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.stepNum)):
if t == args.stepNum - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = (
delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam
)
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.stepNum)):
if t == args.stepNum - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
# flatten the batch
b_obs = obs.reshape((-1,) + env.unity_observation_shape)
b_dis_logprobs = dis_logprobs.reshape(-1)
b_con_logprobs = con_logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + (env.unity_action_size,))
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
#clipfracs = []
for epoch in range(args.epochs):
# shuffle all datasets
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
mb_advantages = b_advantages[mb_inds]
# normalize advantages
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (
mb_advantages.std() + 1e-8
)
(
_,
new_dis_logprob,
dis_entropy,
new_con_logprob,
con_entropy,
newvalue,
) = agent.get_actions_value(b_obs[mb_inds], b_actions[mb_inds])
# discrete ratio
dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
dis_ratio = dis_logratio.exp()
# continuous ratio
con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
con_ratio = con_logratio.exp()
"""
# early stop
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
"""
# discrete Policy loss
dis_pg_loss_orig = -mb_advantages * dis_ratio
dis_pg_loss_clip = -mb_advantages * torch.clamp(
dis_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
# continuous Policy loss
con_pg_loss_orig = -mb_advantages * con_ratio
con_pg_loss_clip = -mb_advantages * torch.clamp(
con_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
# total loss
entropy_loss = dis_entropy.mean() + con_entropy.mean()
loss = (
dis_pg_loss
+ con_pg_loss
- entropy_loss * args.ent_coef
+ v_loss * args.critic_coef
)
optimizer.zero_grad()
loss.backward()
# Clips gradient norm of an iterable of parameters.
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
"""
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
"""
# record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/dis_policy_loss", dis_pg_loss.item(), global_step)
writer.add_scalar("losses/con_policy_loss", con_pg_loss.item(), global_step)
writer.add_scalar("losses/total_loss", loss.item(), global_step)
writer.add_scalar("losses/entropy_loss", entropy_loss.item(), global_step)
# writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
# writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
#writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
writer.add_scalar(
"charts/Reward", np.mean(rewards.to("cpu").detach().numpy().copy()), global_step
)
env.close()
writer.close()