Aimbot-PPO/Aimbot-PPO-Python/Pytorch/Archive/test2.ipynb
Koha9 efb5c61f0d 代码整理
分离args,规范化命名
2023-07-24 16:48:47 +09:00

235 lines
15 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MyNet(\n",
" (fc1): Linear(in_features=10, out_features=20, bias=True)\n",
" (fc2): Linear(in_features=20, out_features=10, bias=True)\n",
")\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANMAAAD5CAYAAAC9MACJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYnUlEQVR4nO3deZhcZZXH8e+PzoJpCNkkQAjLAALRQZyJcQVBFiEiMIqaOCo4YARlBscVRdFHHmaCDDI+AyObGTZZFA1mNATiLopIQPY1YpCEkBASQhKWpLvP/FG3M0Wnqvt03zedt6rOh6eeruX0W7ebnL633vvec2RmhBDK22pLb0AIzSKSKYREIplCSCSSKYREIplCSCSSKYREhmzpDahl5Jgh9uoJw12xTz0zxj3uuHHPu2OffWakO9Z7cqGrvcs95pDn/X/nhqx60R3bMepV7ti2l33b+9LLz7F+wzq5B67hXQe327MrO12xd9778s1mdkRvMZKOAL4NtAGXmdnMHq+fDHwK6ATWAjPM7MGBbHu3LJPp1ROGM3P2Pq7Yr1/6Yfe4Hzt+njv2qot6/X/1Cl1tvrh1U/z/6MfO29odO+aH97hjnztyP3fsyMdfcMXdfu9F7jHrWbGyk9tv3tkVO3THP4/r7XVJbcCFwGHAYuAOSXN6JMs1ZnZREX808C3A/z+9hlKHeZKOkPSIpIWSTq/x+nBJ1xev3y5ptzLvF5qZ0WldrpvDFGChmT1uZuuB64BjXvFuZtWHKe34DzDqGnAyVWX/kcAkYLqkST3CTgRWmdmewPnAOQN9v9DcDOjCXDeHCcCTVY8XF8+9gqRPSfoz8E3gX8r+DGX2TH1mf/H4iuL+DcAhkkodW4fm1eX8DxgnaUHVbcZA3s/MLjSzPYAvAl8pu/1lPjPVyv431Ysxsw5Jq4GxwIoS7xuakGFs8B3CAawws8m9vL4EmFj1eOfiuXquA77jffN6spkalzSj+y/N8ys7tvTmhEFmQCfmujncAewlaXdJw4BpwJzqAEl7VT18N/BY2Z+hzJ7Jk/3dMYslDQG2A56tNZiZXQJcArDH37bHUvYW5Pw81KfiKOhU4GYqU+OzzOwBSd8AFpjZHOBUSYcCG4BVwPFl37dMMm3MfipJMw34UI+YOVQ28jbgOOAXFtd8hBoM6Ez4T8PM5gJzezx3ZtX905K9WWHAyeTM/u8CV0laCKykknAh1OQ/pZ2nUidtHdn/EvD+Mu8RWoP5Pw9lK8sVEKs6RvCDZ3qbrPl/E+fW/AhW04U7Hu6O3XveUnfsknfv6IrrfMm5VALY5qn17thHz/avathlnn9y58UdfKswuh4qf7bDDDY0di7lmUyhFYlOGvsUZCRTyIIBXbFnCiGN2DOFkEDlpG0kUwilGbDBslmQMyCRTCELhujMZ3XbgEQyhWx0WRzmhVBafGYKIRnRGZ+ZQiivcqVtJFNyHY908dw717liXz7ob9zj7n2pf+nRy7v4qx5t5Suqw47z/b/uRe9xh3L2kde7Y7+2k3/g9WuGueI23OUesi4zsd78y61ylGUyhdbUFZ+ZQiivMgERh3khJBATECEkERMQISTUGSdtQyjPEBussf85lqnoOlHSLyU9KOkBSZsUqJB0kKTVku4ubmfWGiuE7gkIzy1XZf4UdACfNbO7JG0L3Clpfo1OAr81s6NKvE9oAYZa9zDPzJYCS4v7ayQ9RKWCa6m2HKF1NfoERJKtL7pbvAG4vcbLb5F0j6SbJL02xfuF5mMGnbaV65ar0p/4JG0D/BD4dI82HQB3Abua2VpJU4Ebgb2ooSi+PgNg6Ku3Y+llvmVC7df6f4QR965xx95wyxV9BxXe/fnPuOJGLVjmHvPpt4x3x551+XR3bNcof6GFfa5d7Yp7bnn5ineVCYjGXk5Utj/TUCqJ9D0z+1HP183seTNbW9yfCwyVVLNRlZldYmaTzWxy28gRZTYrNKhGn4AoM5snKhVbHzKzb9WJ2aG7hYykKcX7+VebhpZhiC7z3Twcjfg+U8xE3yvp55J2LfszlDnMexvwEeA+SXcXz30Z2AWgaHF4HHCKpA7gRWBa1BoP9aTa6zjbcP4JmGxmL0g6hUrDsw+Wed8ys3m3Qu/LfM3sAuCCgb5HaB2VunnJDuE2NuIDkNTdiG9jMpnZL6vi/wD4myPX0dinnEMTSVrR1dOIr9qJwE1l3zSSKWShUurLPZs3TtKCqseXFP29+k3Sh4HJwDsG8v3VIplCFszUn8O8JG04i2ZnZwDvMLOXvW9eTyRTyEbCE7J9NuKT9AbgYuAIM1ue4k0jmUIWKtczpfnM5GzEdy6wDfCD4uzNX83s6DLvG8kUMpH2SltHI75Dk71ZIctk0po2tvrZaFfs2umr3OPO/Pd57tjTlx7iju3Y2vcXtWtb/8qOfb7qXy/8hT/d6o6dNMy/pOrwxZ93xW1YUn4ZUGVqvEVXjYeQUjOszYtkCtlo9EswIplCFiqXYMRhXghJxGemEBKorBqPw7wQSovOgSEkE3umEJKJwv0hJBCzeZvJa3ZYxi1fPNcV+8ZbNql9Wddv1u7jjl2wbGLfQYWX3tOzjkxt7f+41j3mlHG+MQF+uvr17tiZM/wFokaP2+CKa3spzcXTcZgXQgLdNSAaWYpSX4uANUAn0NHzOpOioMq3ganAC8AJZpag11xoJgZ0xJ4JgIPNbEWd146kUitvLyqXDn+H3i8hDi0qDvP6dgxwZVGV6A+SRknasSivHEJFP8p45SrFnwIDbpF0Z1GVtadaxS0mJHjf0ES6Lw703HKVYs/0djNbIml7YL6kh83sN/0dpLo88s4TGnspfhiYlt8zmdmS4utyYDaVmmXVXMUtqssjjx3b2MfOof+6Lw5MVdF1Syhba7y96M2EpHbgcOD+HmFzgI+q4s3A6vi8FHoyREfXVq5brsoe5o0HZhcFKYYA15jZPEknw8YSyXOpTIsvpDI1/rGS7xmaVM6fhzxKJVNRfnaT0+9FEnXfN+BTZd4ntABr/M9MWa6AeOi57Xnj//qWCQ171j9Z8ZNzDnLHrjzA33No2OiXXHEvbhjqHvMHv/efiht7p//Q5+vX/Y879tzTPuILTJADUVAlhIQimUJIwBCdGU8ueEQyhWy09ARECKlYE0xANPZ+NTQVM7luHo42nAdKuktSh6TjUmx/JFPIRLqetlVtOI8EJgHTJU3qEfZX4ATgmlQ/QRzmhWx49zoOnjaci4rX/OdA+hDJFLJgBp1dW6wNZxKRTCEb/ZjNS9aGM6VIppAFo1+HeUnacKaWZTINf9Z4zZW+JTpPHrqNe9xRj/qrA838xvfcsSdffbIrbsz31rnHXPF1f4vV7555Ud9Bhc9N/4Q79uTLb3DFfeW9/h5Z9SW9vKLPNpybQ8zmhWyY+W59j2MdQHcbzoeA73e34ZR0NICkN0paDLwfuFjSA2W3P8s9U2hNCWfzPG0476By+JdMJFPIQmU2r7EPlCKZQjY8h3A5i2QK2Uh5mLclRDKFLBj+dXe5GvBBqqS9Jd1ddXte0qd7xBwkaXVVzJl1hguhcq7JccvVgPdMZvYIsD9sXFi4hEqpr55+a2ZHDfR9QoswsHTLibaIVId5hwB/NrMnEo0XWlDLHub1MA24ts5rb5F0j6SbJPmbA4WWk+qk7ZaSoqXMMOBo4Es1Xr4L2NXM1kqaCtxIpRtGrXE2lkfeeshI2la94Hr/zq3b3dv6oatucsee875p7tjzbpjlijv/V/4VLT9+64Xu2LOXTHXH6vaeNULre7pjO1fcBitfzrqfa/OylGLPdCRwl5kt6/mCmT1vZmuL+3OBoZLG1RqkujzysCEjEmxWaCgGmHy3TKVIpunUOcSTtEPR7AxJU4r3ezbBe4Ym1NKHeUV98cOAT1Q9V10a+TjgFEkdwIvAtKLCawg9qLVn88xsHTC2x3PVpZEvAC4o8x6hhTT4n9lYARHyYI0/ARHJFPIRe6YQUok9UwhpJCu6tWVEMoU8dJ9namCRTCEbjX7SJMtkGrb7eiZe6avMtPTK7d3j/vq5fdyxnSP8jclOu/EEV9y2r/WfI//AxZ91x+54m6+SE8DQSb5lWgC3HLurK+75J+5zj9mrSKYQEonDvBDSUOyZQkjABK28nCiEpGLPFEIiDZ5MjV31LzSXhBVVHJ0Dh0u6vnj9dkm7ld38SKaQh4QXBzo7B54IrDKzPYHzgXPK/giRTCEbMt/NYWPnQDNbD3R3Dqx2DHBFcf8G4JDuC1kHKpIp5CPdYV6tzoET6sUUXTNW0+PavP6KCYiQjX6cZ4rOgV7r/zKMJz+2iyu282x/o62nTvJ3EDl19g/csWc94quxOeJXo9xj/vA757tjf/TRmgWfapowdKU79qsP9jwyqm3DvyY6PzS4nQO7YxZLGgJsR8n6JHGYF/LgPcTz7b02dg4sStFNA+b0iJkDHF/cPw74Rdn6JK5kkjRL0nJJ91c9N0bSfEmPFV9H1/ne44uYxyQdXysmBCBZMnk6BwLfBcZKWgh8Bthk+ry/vId5l1MpjHJl1XOnAz83s5nFPP7pwBerv0nSGOBrwGQqv4Y7Jc0xsxRNUEOTUcKLAx2dA1+i0oIzGdeeycx+A/Q82K6eWrwCOLbGt74LmG9mK4sEmg8cMbBNDU2vwdtglJmAGG9mS4v7TwPja8R4pihD6M85pGwlmc0zM5PK/SpeUWt86MgUmxUaTYNfz1RmNm+ZpB0Biq/La8R4piiBHrXG26LWeEtq8MO8MslUPbV4PPDjGjE3A4dLGl3M9h1ePBfCJhIuJ9oivFPj1wK3AXtLWizpRGAmcJikx4BDi8dImizpMgAzWwmcRWXe/w7gG8VzIbySVWbzPLdcuT4zmdn0Oi8dUiN2AXBS1eNZgK+BUWhtGe91PLJcTtQxYggr31DzHPAmdj6jH6esnqr1sa62PYb6V5asWO6bMPn4v/3aPea4Nn8Tt1+s9FddevrsPdyx459a54r7y5JUy4nSDLOlZJlMoTXl/HnII9bmhZBI7JlCPhp8zxTJFPJgec/UeUQyhXzEnimE8kTjT0BEMoV8RDKFkEDmS4U8IplCPmICIoQ0Ys+0GXQOh+d39Z1P3mmGf93so3P3dcdOu8AfO3a171/B3x24yD3m7jfOcMfuec16d+zff/tOd+yZ43/ninvnkSvcY/YqkimEBDK/VskjkilkIw7zQkglkimENGI5UQgpxGemENJQcWtkfc4/1ymNfK6khyXdK2m2pFF1vneRpPsk3d2ja0EIm2qB6kSXs2kV1vnA68xsP+BR4Eu9fP/BZrZ/H10LQhiU6kT9qJE/T9Jzkn7iHbvPZKpVGtnMbimKowP8gUo9vBDKGZw9U3eN/L2An1O/YP+5wEf6M3CKy9b/CbipzmsG3CLpzqJiawi1DV6pL0+NfMzs58Ca/gxcagJC0hlAB/C9OiFvN7MlkrYH5kt6uNjT1RprY3nk4a8axbj7O2qFbeJPu+7m3t6LT7rUHXv+se9zxz5yynauuLO+dIJ7zEm/XeSOvfqO2e7Yt93u/5v28Ltf7Yp7fMX33WP2anA+D3lq5A/IgJNJ0gnAUcAh9ZpEmdmS4utySbOpNO6tmUxFG8VLALYZvXPGHzPD5pKqDaeknwE71Pi+M6ofpKiRX21AySTpCOALwDvM7IU6Me3AVma2prh/OPCNAW9paH7+f9a9tuE0s0PrvSZpmaQdzWxpLzXyB8QzNV6rNPIFwLZUDt3ulnRREbuTpO4GU+OBWyXdA/wR+KmZzUu14aH5DFKtcU+N/AHpc89UpzTyd+vEPgVMLe4/Dry+1NaF1mEM1sWBM4HvFzuFJ4APQKVGPnCymZ1UPP4tsA+wjaTFwIlm1mvTiVgBEbIwWAVVzOxZfDXyD+jv2JFMIR8NPu0UyRSyodqTwg0jkinkIfN1dx6RTCEbcaVtCInExYGbQefYLladsNYVu+2to9zjfvmPJ/UdVNh+8YPu2N+95zJX3NvaT3OP+cJ4f1OyYz/5aXfsgxdf0ndQ4TWnneKKe/m/hrvH7FXsmUJIICq6hpBQJFMI5UUXjBASUldjZ1MkU8hDnGcKIZ2YGg8hldgzhZBGTECEkIIBsdA1PXuxjY57RrliNcI/btdQf83Qp6dPcseeuJ8vru30Ye4xd7rxCXfsullD3bEHntKPvk8PPO2Ke2bFBveYvYnPTCEk0AznmQZaHvnrkpYU9R/uljS1zvceIekRSQsl1Sv2F0LlEM97y9RAyyMDnF+UPd7fzOb2fFFSG3AhcCQwCZguyX/sFFrOIBVU2WwGVB7ZaQqw0MweN7P1wHVUqmmGUFsLFO6v59SiC8asOsXPJwBPVj1eXDwXQk1Nv2eq4zvAHsD+wFLgvLIbImmGpAWSFnSuW1d2uNBoDOg03y1TA0omM1tmZp1m1gVcSuWQrqclwMSqxzsXz9Ub8xIzm2xmk9va2weyWaHBteSeqSgr2+0fgPtrhN0B7CVpd0nDgGlUqmmGUFuDz+b1eZ6pKI98EJVi6YuBrwEHSdqfys55EfCJInYn4DIzm2pmHZJOBW4G2oBZZvbA5vghQnPIea/jsdnKIxeP5wKbTJuHsInMZ+o8slwBMaR9A2Pe7FvK0n7WSPe4V193oTv2rdd/1h27zTv2dsXtefUq95gbJo5zx3ZetLU79uRv3uCOnTriyb6DgEOmDuTMySsJ0CBMLkgaA1wP7EblqOoDZraqR8z+VCbZRgKdwNlmdn1fY6foHBhCEjJz3UrytOF8Afiomb2WyoKF/6zXBL1aJFPIg/eEbfmd1zH00YbTzB41s8eK+09R6eHUZxvFLA/zQisatJm6frXhlDQFGAb8ua+BI5lCNnJrw1mcAroKOL44p9qrSKaQD/+eabO34ZQ0EvgpcIaZ/cGzUfGZKeTBKrN5nltJfbbhLBYZzAauNDP39GckU8jH4ExAzAQOk/QYcGjxGEmTJXUXjf8AcCBwQtU1e/v3NXAc5oVsDEazM08bTjO7Gri6v2NHMoV8ZLzuziOSKeTBGKxu65tNlsm0+9bPcvW+V7pi33nSae5xj9/ncHfshIP9/2fN+Vvsuv9h95hv+JM7lHlP7OuOnfXJY92xXzux0xW3ZM1/u8esRyRZ3bBFZZlMoUV1NfauKZIp5CEO80JIJw7zQkglkimEFPK+JN0jkinkobs6UQPz1ICYBRwFLDez1xXPXQ90X146CnjOzPav8b2LgDVUrlbs6G1xYgit8JnpcuACYOOJHzP7YPd9SecBq3v5/oPNbMVANzC0kGZPJjP7jaTdar0mSVQWBb4z8XaFVmNAgzeILrtq/ABgWfclvjUYcIukOyX5GwOFFuSsmZfx3qvsBMR04NpeXn+7mS2RtD0wX9LDRSOATRTJNgOgbfRoDv3h51wb8KqV/r8HLx7ob8LxzOv9v5rRB/gqKX3/gtvcY05/Xa3GI7VNufmv7tg//vMu7tjT9vq9K+68EWvcY/Yq40TxGPCeSdIQ4L1UyibVZGZLiq/LqVxsVauMcndslEduZQZ0dvlumSpzmHco8LCZLa71oqR2Sdt23wcOp3YZ5RCoHOZ1+W6Z8nQOvBa4Ddhb0mJJJxYvTaPHIZ6knSR1V3AdD9wq6R7gj8BPzWxeuk0PTafZPzPVKY+MmZ1Q47mN5ZHN7HHg9SW3L7SKJpjNixUQIR8Z73U8IplCPiKZQkjADDp9V/bmKpIp5CP2TCEkEskUQgoWs3mbQ/s2L/HGNz3qiv3Q9q4y0AAc8An/4vWDzvMtZwKwy7d3xX381KP8Y+7SZweTje5fucEd+6V9/af6rjzqYFfc6icSnIs3cNTGz1qWyRRaVMZLhTyi1njIg1ml1JfnVoKkMZLmS3qs+Dq6Rsyuku4qaow/IOlkz9iRTCEfg7OcyNOGcynwluLq8TcBp0vaqa+BI5lCNqyry3UrydOGc72ZvVw8HI4zTyKZQiYG7eJAVxtOSRMl3Qs8CZxTrDvtVUxAhDz0b6HrZm/DaWZPAvsVh3c3SrrBzJb1tlGRTCELBph/OdFmb8NZNdZTku6nUqKh1y6CcZgX8mCDdnGgpw3nzpJeVdwfDbwdeKSvgSOZQjasy1y3kjxtOPcFbi8ubP018B9mdl9fA8dhXsjHIKyAcLbhnA/s19+xZRkuLpT0DPBEj6fHAc1YzLIZfq5dzcy//qkGSfOo/C48VpiZv3zTIMkymWqRtKAZyys368/ViuIzUwiJRDKFkEgjJdMlfYc0pGb9uVpOw3xmCiF3jbRnCiFrDZFMko6Q9IikhZJqLZlvSJIWSbqvuG5mQd/fEXKW/WGepDbgUeAwYDFwBzDdzB7cohuWQNFZcXI0g2sOjbBnmgIsNLPHzWw9cB2Va1JCyEojJNMEKteUdFtcPNcMohlcE4m1eVuWuxlcyF8j7JmWABOrHu9cPNfw+tMMLuSvEZLpDmAvSbtLGkalL9ScLbxNpUUzuOaT/WGemXVIOhW4GWgDZpnZA1t4s1IYD8yuNKxnCHBNNINrbNlPjYfQKBrhMC+EhhDJFEIikUwhJBLJFEIikUwhJBLJFEIikUwhJBLJFEIi/weq7RffiwqZhgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import torch\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# 创建一个神经网络\n",
"class MyNet(torch.nn.Module):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.fc1 = torch.nn.Linear(10, 20)\n",
" self.fc2 = torch.nn.Linear(20, 10)\n",
"\n",
" def forward(self, x):\n",
" x = torch.relu(self.fc1(x))\n",
" x = self.fc2(x)\n",
" return x\n",
"\n",
"net = MyNet()\n",
"\n",
"# 打印神经网络结构\n",
"print(net)\n",
"\n",
"# 获取第一层权重张量\n",
"weights = net.state_dict()['fc1.weight']\n",
"\n",
"# 将权重张量转换为numpy数组并可视化\n",
"plt.imshow(weights.numpy())\n",
"plt.colorbar()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"python version: 3.11.3 | packaged by Anaconda, Inc. | (main, Apr 19 2023, 23:46:34) [MSC v.1916 64 bit (AMD64)]\n"
]
}
],
"source": [
"# print python version\n",
"import sys\n",
"print('python version: ', sys.version)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import argparse\n",
"import wandb\n",
"import time\n",
"import numpy as np\n",
"import random\n",
"import uuid\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"\n",
"from AimbotEnv import Aimbot\n",
"from tqdm import tqdm\n",
"from torch.distributions.normal import Normal\n",
"from torch.distributions.categorical import Categorical\n",
"from distutils.util import strtobool\n",
"from torch.utils.tensorboard import SummaryWriter\n",
"from mlagents_envs.environment import UnityEnvironment\n",
"from mlagents_envs.side_channel.side_channel import (\n",
" SideChannel,\n",
" IncomingMessage,\n",
" OutgoingMessage,\n",
")\n",
"from typing import List\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'aaa' object has no attribute 'outa'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[5], line 14\u001b[0m\n\u001b[0;32m 12\u001b[0m asd \u001b[39m=\u001b[39m aaa(outa, outb)\n\u001b[0;32m 13\u001b[0m asd\u001b[39m.\u001b[39mfunc()\n\u001b[1;32m---> 14\u001b[0m \u001b[39mprint\u001b[39m(asd\u001b[39m.\u001b[39;49mouta) \u001b[39m# 输出 100\u001b[39;00m\n",
"\u001b[1;31mAttributeError\u001b[0m: 'aaa' object has no attribute 'outa'"
]
}
],
"source": [
"class aaa():\n",
" def __init__(self, a, b):\n",
" self.a = a\n",
" self.b = b\n",
"\n",
" def func(self):\n",
" global outa\n",
" outa = 100\n",
"\n",
"outa = 1\n",
"outb = 2\n",
"asd = aaa(outa, outb)\n",
"asd.func()\n",
"print(asd.outa) # 输出 100"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"usage: ipykernel_launcher.py [-h] [--seed SEED]\n",
"ipykernel_launcher.py: error: unrecognized arguments: --ip=127.0.0.1 --stdin=9003 --control=9001 --hb=9000 --Session.signature_scheme=\"hmac-sha256\" --Session.key=b\"46ef9317-59fb-4ab6-ae4e-6b35744fc423\" --shell=9002 --transport=\"tcp\" --iopub=9004 --f=c:\\Users\\UCUNI\\AppData\\Roaming\\jupyter\\runtime\\kernel-v2-311926K1uko38tdWb.json\n"
]
},
{
"ename": "SystemExit",
"evalue": "2",
"output_type": "error",
"traceback": [
"An exception has occurred, use %tb to see the full traceback.\n",
"\u001b[1;31mSystemExit\u001b[0m\u001b[1;31m:\u001b[0m 2\n"
]
}
],
"source": [
"import argparse\n",
"\n",
"def parse_args():\n",
" parser = argparse.ArgumentParser()\n",
" parser.add_argument(\"--seed\", type=int, default=11,\n",
" help=\"seed of the experiment\")\n",
" args = parser.parse_args()\n",
" return args\n",
"\n",
"arggg = parse_args()\n",
"print(type(arggg))"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n",
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mkoha9\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import wandb\n",
"wandb.login()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}