Aimbot-PPO/Aimbot-PPO-Python/env.ipynb
Koha9 de066f3a65 Delete near Enemy Detect future. Use different density sensor.
Unity:
No more detect Closest enemy info. Add different density sensor let agent get more state information on the center of view. 
Adjust Start Scene UI manager. Add in game visible rayCast & information that rayCast detect.
Python:
Start use mypy black and flake8 to format Python.
2022-09-30 22:36:47 +09:00

161 lines
3.1 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import env"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"31\n",
"5\n",
"3\n"
]
}
],
"source": [
"a=1"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"包含None\n",
"[123 None]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"def qa(aa = None):\n",
" try:\n",
" isaanone = aa.any() == None\n",
" if aa.all() == None:\n",
" print(\"包含None\")\n",
" except:\n",
" isaanone =True\n",
" if isaanone:\n",
" print('none')\n",
" else:\n",
" print(aa)\n",
"\n",
"qa(np.array([123,None]))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[[1 1 1 1 1]\n",
" [1 2 1 1 1]]\n",
"\n",
" [[2 1 3 4 5]\n",
" [2 2 3 4 5]]\n",
"\n",
" [[3 1 3 4 5]\n",
" [3 2 3 4 5]]]\n",
"-\n",
"tf.Tensor(\n",
"[[1 1 1 1 1]\n",
" [2 1 3 4 5]\n",
" [3 1 3 4 5]], shape=(3, 5), dtype=int32)\n",
"-\n",
"tf.Tensor(\n",
"[[1 2 1 1 1]\n",
" [2 2 3 4 5]\n",
" [3 2 3 4 5]], shape=(3, 5), dtype=int32)\n"
]
}
],
"source": [
"import numpy as np\n",
"import tensorflow as tf\n",
"\n",
"aa = np.array([[[1,1,1,1,1],[1,2,1,1,1],[1,3,1,1,1]],\n",
" [[2,1,3,4,5],[2,2,3,4,5],[2,3,3,4,5]],\n",
" [[3,1,3,4,5],[3,2,3,4,5],[3,3,3,4,5]]])\n",
"tt = tf.constant(aa)\n",
"bb = np.array([6,3,6,3,2,3])\n",
"\n",
"print(aa[:,0:2])\n",
"aa[:,2:]\n",
"\n",
"for asd in tf.transpose(aa[:,0:2],perm=[1,0,2]):\n",
" print('-')\n",
" print(asd)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: shape=(), dtype=int32, numpy=1>"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import tensorflow as tf\n",
"aa = tf.constant(0)\n",
"bb = aa+1\n",
"bb\n"
]
}
],
"metadata": {
"interpreter": {
"hash": "86e2db13b09bd6be22cb599ea60c1572b9ef36ebeaa27a4c8e961d6df315ac32"
},
"kernelspec": {
"display_name": "Python 3.9.7 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}