Aimbot-PPO/Aimbot-PPO-Python/Pytorch/testarea.ipynb
Koha9 7497ffcb0f Parallel Environment Discrete PPO finish
Parallel Environment Discrete PPO finish. Runnable.
2022-10-30 04:13:14 +09:00

454 lines
24 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Action, 1 continuous ctrl 2.1\n",
"Action, 0 continuous ctrl -1.1\n"
]
}
],
"source": [
"import gym\n",
"from gym.spaces import Dict, Discrete, Box, Tuple\n",
"import numpy as np\n",
"\n",
"\n",
"class SampleGym(gym.Env):\n",
" def __init__(self, config={}):\n",
" self.config = config\n",
" self.action_space = Tuple((Discrete(2), Box(-10, 10, (2,))))\n",
" self.observation_space = Box(-10, 10, (2, 2))\n",
" self.p_done = config.get(\"p_done\", 0.1)\n",
"\n",
" def reset(self):\n",
" return self.observation_space.sample()\n",
"\n",
" def step(self, action):\n",
" chosen_action = action[0]\n",
" cnt_control = action[1][chosen_action]\n",
"\n",
" if chosen_action == 0:\n",
" reward = cnt_control\n",
" else:\n",
" reward = -cnt_control - 1\n",
"\n",
" print(f\"Action, {chosen_action} continuous ctrl {cnt_control}\")\n",
" return (\n",
" self.observation_space.sample(),\n",
" reward,\n",
" bool(np.random.choice([True, False], p=[self.p_done, 1.0 - self.p_done])),\n",
" {},\n",
" )\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" env = SampleGym()\n",
" env.reset()\n",
" env.step((1, [-1, 2.1])) # should say use action 1 with 2.1\n",
" env.step((0, [-1.1, 2.1])) # should say use action 0 with -1.1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from mlagents_envs.environment import UnityEnvironment\n",
"from gym_unity.envs import UnityToGymWrapper\n",
"import numpy as np\n",
"\n",
"ENV_PATH = \"../Build-ParallelEnv/Aimbot-ParallelEnv\"\n",
"WORKER_ID = 1\n",
"BASE_PORT = 2002\n",
"\n",
"env = UnityEnvironment(\n",
" file_name=ENV_PATH,\n",
" seed=1,\n",
" side_channels=[],\n",
" worker_id=WORKER_ID,\n",
" base_port=BASE_PORT,\n",
")\n",
"\n",
"trackedAgent = 0\n",
"env.reset()\n",
"BEHA_SPECS = env.behavior_specs\n",
"BEHA_NAME = list(BEHA_SPECS)[0]\n",
"SPEC = BEHA_SPECS[BEHA_NAME]\n",
"print(SPEC)\n",
"\n",
"decisionSteps, terminalSteps = env.get_steps(BEHA_NAME)\n",
"\n",
"if trackedAgent in decisionSteps: # ゲーム終了していない場合、環境状態がdecision_stepsに保存される\n",
" nextState = decisionSteps[trackedAgent].obs[0]\n",
" reward = decisionSteps[trackedAgent].reward\n",
" done = False\n",
"if trackedAgent in terminalSteps: # ゲーム終了した場合、環境状態がterminal_stepsに保存される\n",
" nextState = terminalSteps[trackedAgent].obs[0]\n",
" reward = terminalSteps[trackedAgent].reward\n",
" done = True\n",
"print(decisionSteps.agent_id)\n",
"print(terminalSteps)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"decisionSteps.agent_id [1 2 5 7]\n",
"decisionSteps.agent_id_to_index {1: 0, 2: 1, 5: 2, 7: 3}\n",
"decisionSteps.reward [0. 0. 0. 0.]\n",
"decisionSteps.action_mask [array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False],\n",
" [False, False],\n",
" [False, False],\n",
" [False, False]])]\n",
"decisionSteps.obs [ 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. -15.994009 1. -26.322788 1.\n",
" 1. 1. 1. 1. 1. 2.\n",
" 1. 1. 1. 1. 1. 1.\n",
" 1. 1.3519633 1.6946528 2.3051548 3.673389 9.067246\n",
" 17.521473 21.727095 22.753294 24.167128 25.905216 18.35725\n",
" 21.02278 21.053417 0. ]\n"
]
},
{
"data": {
"text/plain": [
"'decisionSteps.obs [array([[-15.994009 , 1. , -26.322788 , 1. , 1. ,\\n 1. , 1. , 1. , 1. , 2. ,\\n 1. , 1. , 1. , 1. , 1. ,\\n 1. , 1. , 1.3519633, 1.6946528, 2.3051548,\\n 3.673389 , 9.067246 , 17.521473 , 21.727095 , 22.753294 ,\\n 24.167128 , 25.905216 , 18.35725 , 21.02278 , 21.053417 ,\\n 0. ],\\n [ -1.8809433, 1. , -25.66834 , 1. , 2. ,\\n 1. , 1. , 1. , 1. , 1. ,\\n 1. , 1. , 1. , 1. , 1. ,\\n 1. , 1. , 16.768637 , 23.414627 , 22.04486 ,\\n 21.050663 , 20.486784 , 20.486784 , 21.050665 , 15.049731 ,\\n 11.578419 , 9.695194 , 20.398016 , 20.368341 , 20.398016 ,\\n...\\n 20.551746 , 20.00118 , 20.001116 , 20.551594 , 21.5222 ,\\n 17.707508 , 14.86889 , 19.914494 , 19.885508 , 19.914463 ,\\n 0. ]], dtype=float32)]'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\"decisionSteps.agent_id\",decisionSteps.agent_id)\n",
"# decisionSteps.agent_id [1 2 5 7]\n",
"print(\"decisionSteps.agent_id_to_index\",decisionSteps.agent_id_to_index)\n",
"# decisionSteps.agent_id_to_index {1: 0, 2: 1, 5: 2, 7: 3}\n",
"print(\"decisionSteps.reward\",decisionSteps.reward)\n",
"# decisionSteps.reward [0. 0. 0. 0.]\n",
"print(\"decisionSteps.action_mask\",decisionSteps.action_mask)\n",
"'''\n",
"decisionSteps.action_mask [array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False],\n",
" [False, False],\n",
" [False, False],\n",
" [False, False]])]\n",
"'''\n",
"print(\"decisionSteps.obs\", decisionSteps.obs[0][0])\n",
"'''decisionSteps.obs [array([[-15.994009 , 1. , -26.322788 , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 2. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1.3519633, 1.6946528, 2.3051548,\n",
" 3.673389 , 9.067246 , 17.521473 , 21.727095 , 22.753294 ,\n",
" 24.167128 , 25.905216 , 18.35725 , 21.02278 , 21.053417 ,\n",
" 0. ],\n",
" [ -1.8809433, 1. , -25.66834 , 1. , 2. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 16.768637 , 23.414627 , 22.04486 ,\n",
" 21.050663 , 20.486784 , 20.486784 , 21.050665 , 15.049731 ,\n",
" 11.578419 , 9.695194 , 20.398016 , 20.368341 , 20.398016 ,\n",
"...\n",
" 20.551746 , 20.00118 , 20.001116 , 20.551594 , 21.5222 ,\n",
" 17.707508 , 14.86889 , 19.914494 , 19.885508 , 19.914463 ,\n",
" 0. ]], dtype=float32)]'''\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from AimbotEnv import Aimbot\n",
"\n",
"ENV_PATH = \"../Build-ParallelEnv/Aimbot-ParallelEnv\"\n",
"WORKER_ID = 1\n",
"BASE_PORT = 2002\n",
"\n",
"env = Aimbot(envPath=ENV_PATH,workerID= WORKER_ID,basePort= BASE_PORT)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([[ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -15.994009 , 1. , -26.322788 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 2. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1.3519633, 1.6946528,\n",
" 2.3051548, 3.673389 , 9.067246 , 17.521473 , 21.727095 ,\n",
" 22.753294 , 24.167128 , 25.905216 , 18.35725 , 21.02278 ,\n",
" 21.053417 , 0. , -15.994003 , 1. , -26.322784 ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1.3519667,\n",
" 1.6946585, 2.3051722, 3.6734192, 9.067533 , 21.145092 ,\n",
" 21.727148 , 22.753365 , 24.167217 , 25.905317 , 18.358263 ,\n",
" 21.022812 , 21.053455 , 0. ],\n",
" [ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -1.8809433, 1. , -25.66834 , 1. ,\n",
" 2. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 16.768637 , 23.414627 ,\n",
" 22.04486 , 21.050663 , 20.486784 , 20.486784 , 21.050665 ,\n",
" 15.049731 , 11.578419 , 9.695194 , 20.398016 , 20.368341 ,\n",
" 20.398016 , 0. , -1.8809433, 1. , -25.66834 ,\n",
" 1. , 1. , 2. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 2. ,\n",
" 2. , 1. , 1. , 1. , 25.098585 ,\n",
" 15.749494 , 22.044899 , 21.050697 , 20.486813 , 20.486813 ,\n",
" 21.050694 , 15.049746 , 3.872317 , 3.789325 , 20.398046 ,\n",
" 20.368372 , 20.398046 , 0. ],\n",
" [ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -13.672583 , 1. , -26.479263 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 5.3249803, 6.401276 ,\n",
" 8.374101 , 12.8657875, 21.302414 , 21.30242 , 21.888742 ,\n",
" 22.92251 , 24.346794 , 26.09773 , 21.210114 , 21.179258 ,\n",
" 21.210117 , 0. , -13.672583 , 1. , -26.479263 ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 2. , 1. , 1. ,\n",
" 2. , 1. , 1. , 2. , 5.3249855,\n",
" 6.4012837, 8.374114 , 12.865807 , 21.302446 , 21.30245 ,\n",
" 16.168503 , 22.922543 , 24.346823 , 7.1110754, 21.210148 ,\n",
" 21.17929 , 12.495141 , 0. ],\n",
" [ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -4.9038744, 1. , -25.185507 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 20.33171 , 22.859762 ,\n",
" 21.522427 , 20.551746 , 20.00118 , 20.001116 , 20.551594 ,\n",
" 21.5222 , 17.707508 , 14.86889 , 19.914494 , 19.885508 ,\n",
" 19.914463 , 0. , -4.9038773, 1. , -25.185507 ,\n",
" 1. , 2. , 1. , 2. , 1. ,\n",
" 1. , 1. , 1. , 2. , 1. ,\n",
" 1. , 1. , 1. , 1. , 15.905993 ,\n",
" 22.85977 , 11.566693 , 20.551773 , 20.00121 , 20.001146 ,\n",
" 20.551619 , 7.135157 , 17.707582 , 14.868943 , 19.914528 ,\n",
" 19.88554 , 19.914494 , 0. ]], dtype=float32),\n",
" [[-0.05], [-0.05], [-0.05], [-0.05]],\n",
" [[False], [False], [False], [False]])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"env.unity_observation_shape\n",
"(128, 4) + env.unity_observation_shape\n",
"env.reset()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0 0 0 0]\n",
" [0 0 0 0]\n",
" [0 0 0 0]\n",
" [0 0 0 0]]\n",
"[[0]\n",
" [0]\n",
" [0]\n",
" [0]]\n",
"[[0 0 0]\n",
" [0 0 0]\n",
" [0 0 0]\n",
" [0 0 0]]\n"
]
},
{
"data": {
"text/plain": [
"([array([ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -15.994009 , 1. , -26.322788 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 2. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1.3519633, 1.6946528,\n",
" 2.3051548, 3.673389 , 9.067246 , 17.521473 , 21.727095 ,\n",
" 22.753294 , 24.167128 , 25.905216 , 18.35725 , 21.02278 ,\n",
" 21.053417 , 0. , -15.994003 , 1. , -26.322784 ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 2. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1.3519667,\n",
" 1.6946585, 2.3051722, 3.6734192, 9.067533 , 17.521563 ,\n",
" 21.727148 , 22.753365 , 24.167217 , 25.905317 , 18.358263 ,\n",
" 21.022812 , 21.053455 , 0. ], dtype=float32),\n",
" array([ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -1.8809433, 1. , -25.66834 , 1. ,\n",
" 2. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 16.768637 , 23.414627 ,\n",
" 22.04486 , 21.050663 , 20.486784 , 20.486784 , 21.050665 ,\n",
" 15.049731 , 11.578419 , 9.695194 , 20.398016 , 20.368341 ,\n",
" 20.398016 , 0. , -1.8809433, 1. , -25.66834 ,\n",
" 1. , 2. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 16.768671 ,\n",
" 23.414669 , 22.044899 , 21.050697 , 20.486813 , 20.486813 ,\n",
" 21.050694 , 15.049746 , 11.578423 , 9.695195 , 20.398046 ,\n",
" 20.368372 , 20.398046 , 0. ], dtype=float32),\n",
" array([ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -13.672583 , 1. , -26.479263 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 5.3249803, 6.401276 ,\n",
" 8.374101 , 12.8657875, 21.302414 , 21.30242 , 21.888742 ,\n",
" 22.92251 , 24.346794 , 26.09773 , 21.210114 , 21.179258 ,\n",
" 21.210117 , 0. , -13.672583 , 1. , -26.479263 ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 5.3249855,\n",
" 6.4012837, 8.374114 , 12.865807 , 21.302446 , 21.30245 ,\n",
" 21.888773 , 22.922543 , 24.346823 , 26.097757 , 21.210148 ,\n",
" 21.17929 , 21.21015 , 0. ], dtype=float32),\n",
" array([ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -4.9038744, 1. , -25.185507 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 20.33171 , 22.859762 ,\n",
" 21.522427 , 20.551746 , 20.00118 , 20.001116 , 20.551594 ,\n",
" 21.5222 , 17.707508 , 14.86889 , 19.914494 , 19.885508 ,\n",
" 19.914463 , 0. , -4.9038773, 1. , -25.185507 ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 20.331783 ,\n",
" 22.85977 , 21.522448 , 20.551773 , 20.00121 , 20.001146 ,\n",
" 20.551619 , 21.522217 , 17.707582 , 14.868943 , 19.914528 ,\n",
" 19.88554 , 19.914494 , 0. ], dtype=float32)],\n",
" [[-0.05], [-0.05], [-0.05], [-0.05]],\n",
" [[False], [False], [False], [False]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"actions = np.zeros_like(np.arange(16).reshape(4, 4))\n",
"print(actions)\n",
"env.step(actions)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.7 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "86e2db13b09bd6be22cb599ea60c1572b9ef36ebeaa27a4c8e961d6df315ac32"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}