610 lines
27 KiB
Python
610 lines
27 KiB
Python
import argparse
|
|
import wandb
|
|
import time
|
|
import numpy as np
|
|
import random
|
|
import uuid
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
|
|
from AimbotEnv import Aimbot
|
|
from tqdm import tqdm
|
|
from torch.distributions.normal import Normal
|
|
from torch.distributions.categorical import Categorical
|
|
from distutils.util import strtobool
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from mlagents_envs.environment import UnityEnvironment
|
|
from mlagents_envs.side_channel.side_channel import (
|
|
SideChannel,
|
|
IncomingMessage,
|
|
OutgoingMessage,
|
|
)
|
|
from typing import List
|
|
|
|
bestReward = 0
|
|
|
|
DEFAULT_SEED = 9331
|
|
ENV_PATH = "../Build/Build-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel/Aimbot-ParallelEnv"
|
|
SIDE_CHANNEL_UUID = uuid.UUID("8bbfb62a-99b4-457c-879d-b78b69066b5e")
|
|
WAND_ENTITY = "koha9"
|
|
WORKER_ID = 1
|
|
BASE_PORT = 1000
|
|
|
|
# max round steps per agent is 2500/Decision_period, 25 seconds
|
|
# !!!check every parameters before run!!!
|
|
|
|
TOTAL_STEPS = 4000000
|
|
BATCH_SIZE = 512
|
|
MAX_TRAINNING_DATASETS = 8000
|
|
DECISION_PERIOD = 1
|
|
LEARNING_RATE = 1e-3
|
|
GAMMA = 0.99
|
|
GAE_LAMBDA = 0.95
|
|
EPOCHS = 4
|
|
CLIP_COEF = 0.1
|
|
POLICY_COEF = 1.0
|
|
ENTROPY_COEF = 0.01
|
|
CRITIC_COEF = 0.5
|
|
|
|
ANNEAL_LEARNING_RATE = True
|
|
CLIP_VLOSS = True
|
|
NORM_ADV = True
|
|
TRAIN = True
|
|
|
|
WANDB_TACK = True
|
|
LOAD_DIR = None
|
|
LOAD_DIR = "../PPO-Model/Aimbot-target-last.pt"
|
|
|
|
# public data
|
|
TotalRounds = {"Go":0,"Attack":0,"Free":0}
|
|
WinRounds = {"Go":0,"Attack":0,"Free":0}
|
|
|
|
|
|
def parse_args():
|
|
# fmt: off
|
|
# pytorch and environment parameters
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
|
|
help="seed of the experiment")
|
|
parser.add_argument("--path", type=str, default=ENV_PATH,
|
|
help="enviroment path")
|
|
parser.add_argument("--workerID", type=int, default=WORKER_ID,
|
|
help="unity worker ID")
|
|
parser.add_argument("--baseport", type=int, default=BASE_PORT,
|
|
help="port to connect to Unity environment")
|
|
parser.add_argument("--lr", type=float, default=LEARNING_RATE,
|
|
help="the learning rate of optimizer")
|
|
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
|
help="if toggled, cuda will be enabled by default")
|
|
parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
|
|
help="total timesteps of the experiments")
|
|
|
|
# model parameters
|
|
parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True,
|
|
help="Train Model or not")
|
|
parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS,
|
|
help="training dataset size,start training while dataset collect enough data")
|
|
parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE,
|
|
help="nimi batch size")
|
|
parser.add_argument("--epochs", type=int, default=EPOCHS,
|
|
help="the K epochs to update the policy")
|
|
parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
|
|
help="Toggle learning rate annealing for policy and value networks")
|
|
parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
|
|
help="track on the wandb")
|
|
parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
|
|
help="the entity (team) of wandb's project")
|
|
parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
|
|
help="load model directory")
|
|
parser.add_argument("--decision-period", type=int, default=DECISION_PERIOD,
|
|
help="the number of steps to run in each environment per policy rollout")
|
|
|
|
# GAE loss
|
|
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
|
help="Use GAE for advantage computation")
|
|
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=NORM_ADV, nargs="?", const=True,
|
|
help="Toggles advantages normalization")
|
|
parser.add_argument("--gamma", type=float, default=GAMMA,
|
|
help="the discount factor gamma")
|
|
parser.add_argument("--gaeLambda", type=float, default=GAE_LAMBDA,
|
|
help="the lambda for the general advantage estimation")
|
|
parser.add_argument("--clip-coef", type=float, default=CLIP_COEF,
|
|
help="the surrogate clipping coefficient")
|
|
parser.add_argument("--policy-coef", type=float, default=POLICY_COEF,
|
|
help="coefficient of the policy")
|
|
parser.add_argument("--ent-coef", type=float, default=ENTROPY_COEF,
|
|
help="coefficient of the entropy")
|
|
parser.add_argument("--critic-coef", type=float, default=CRITIC_COEF,
|
|
help="coefficient of the value function")
|
|
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=CLIP_VLOSS, nargs="?", const=True,
|
|
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
|
|
parser.add_argument("--max-grad-norm", type=float, default=0.5,
|
|
help="the maximum norm for the gradient clipping")
|
|
parser.add_argument("--target-kl", type=float, default=None,
|
|
help="the target KL divergence threshold")
|
|
# fmt: on
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
|
torch.nn.init.orthogonal_(layer.weight, std)
|
|
torch.nn.init.constant_(layer.bias, bias_const)
|
|
return layer
|
|
|
|
|
|
class PPOAgent(nn.Module):
|
|
def __init__(self, env: Aimbot):
|
|
super(PPOAgent, self).__init__()
|
|
self.discrete_size = env.unity_discrete_size
|
|
self.discrete_shape = list(env.unity_discrete_branches)
|
|
self.continuous_size = env.unity_continuous_size
|
|
|
|
self.network = nn.Sequential(
|
|
layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 700)),
|
|
nn.ReLU(),
|
|
layer_init(nn.Linear(700, 500)),
|
|
nn.ReLU(),
|
|
layer_init(nn.Linear(500, 256)),
|
|
nn.ReLU(),
|
|
)
|
|
self.actor_dis = layer_init(nn.Linear(256, self.discrete_size), std=0.01)
|
|
self.actor_mean = layer_init(nn.Linear(256, self.continuous_size), std=0.01)
|
|
self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))
|
|
self.critic = layer_init(nn.Linear(256, 1), std=1)
|
|
|
|
def get_value(self, state: torch.Tensor):
|
|
return self.critic(self.network(state))
|
|
|
|
def get_actions_value(self, state: torch.Tensor, actions=None):
|
|
hidden = self.network(state)
|
|
# discrete
|
|
dis_logits = self.actor_dis(hidden)
|
|
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
|
|
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
|
|
# continuous
|
|
actions_mean = self.actor_mean(hidden)
|
|
action_logstd = self.actor_logstd.expand_as(actions_mean)
|
|
action_std = torch.exp(action_logstd)
|
|
con_probs = Normal(actions_mean, action_std)
|
|
|
|
if actions is None:
|
|
if args.train:
|
|
# select actions base on probability distribution model
|
|
disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
|
|
conAct = con_probs.sample()
|
|
actions = torch.cat([disAct.T, conAct], dim=1)
|
|
else:
|
|
# select actions base on best probability distribution
|
|
disAct = torch.stack([torch.argmax(logit, dim=1) for logit in split_logits])
|
|
conAct = actions_mean
|
|
actions = torch.cat([disAct.T, conAct], dim=1)
|
|
else:
|
|
disAct = actions[:, 0 : env.unity_discrete_type].T
|
|
conAct = actions[:, env.unity_discrete_type :]
|
|
dis_log_prob = torch.stack(
|
|
[ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]
|
|
)
|
|
dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
|
|
return (
|
|
actions,
|
|
dis_log_prob.sum(0),
|
|
dis_entropy.sum(0),
|
|
con_probs.log_prob(conAct).sum(1),
|
|
con_probs.entropy().sum(1),
|
|
self.critic(hidden),
|
|
)
|
|
|
|
|
|
def GAE(agent, args, rewards, dones, values, next_obs, next_done):
|
|
# GAE
|
|
with torch.no_grad():
|
|
next_value = agent.get_value(next_obs).reshape(1, -1)
|
|
data_size = rewards.size()[0]
|
|
if args.gae:
|
|
advantages = torch.zeros_like(rewards).to(device)
|
|
lastgaelam = 0
|
|
for t in reversed(range(data_size)):
|
|
if t == data_size - 1:
|
|
nextnonterminal = 1.0 - next_done
|
|
nextvalues = next_value
|
|
else:
|
|
nextnonterminal = 1.0 - dones[t + 1]
|
|
nextvalues = values[t + 1]
|
|
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
|
|
advantages[t] = lastgaelam = (
|
|
delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam
|
|
)
|
|
returns = advantages + values
|
|
else:
|
|
returns = torch.zeros_like(rewards).to(device)
|
|
for t in reversed(range(data_size)):
|
|
if t == data_size - 1:
|
|
nextnonterminal = 1.0 - next_done
|
|
next_return = next_value
|
|
else:
|
|
nextnonterminal = 1.0 - dones[t + 1]
|
|
next_return = returns[t + 1]
|
|
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
|
|
advantages = returns - values
|
|
return advantages, returns
|
|
|
|
class AimbotSideChannel(SideChannel):
|
|
def __init__(self, channel_id: uuid.UUID) -> None:
|
|
super().__init__(channel_id)
|
|
def on_message_received(self, msg: IncomingMessage) -> None:
|
|
"""
|
|
Note: We must implement this method of the SideChannel interface to
|
|
receive messages from Unity
|
|
"""
|
|
thisMessage = msg.read_string()
|
|
print(thisMessage)
|
|
thisResult = thisMessage.split("|")
|
|
if(thisResult[0] == "result"):
|
|
TotalRounds[thisResult[1]]+=1
|
|
if(thisResult[2] == "Win"):
|
|
WinRounds[thisResult[1]]+=1
|
|
print(TotalRounds)
|
|
print(WinRounds)
|
|
elif(thisResult[0] == "Error"):
|
|
print(thisMessage)
|
|
# 发送函数
|
|
def send_string(self, data: str) -> None:
|
|
"""发送一个字符串给C#"""
|
|
msg = OutgoingMessage()
|
|
msg.write_string(data)
|
|
super().queue_message_to_send(msg)
|
|
|
|
def send_bool(self, data: bool) -> None:
|
|
msg = OutgoingMessage()
|
|
msg.write_bool(data)
|
|
super().queue_message_to_send(msg)
|
|
|
|
def send_int(self, data: int) -> None:
|
|
msg = OutgoingMessage()
|
|
msg.write_int32(data)
|
|
super().queue_message_to_send(msg)
|
|
|
|
def send_float(self, data: float) -> None:
|
|
msg = OutgoingMessage()
|
|
msg.write_float32(data)
|
|
super().queue_message_to_send(msg)
|
|
|
|
def send_float_list(self, data: List[float]) -> None:
|
|
msg = OutgoingMessage()
|
|
msg.write_float32_list(data)
|
|
super().queue_message_to_send(msg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
|
|
|
|
# Initialize environment anget optimizer
|
|
aimBotsideChannel = AimbotSideChannel(SIDE_CHANNEL_UUID);
|
|
env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport,side_channels=[aimBotsideChannel])
|
|
if args.load_dir is None:
|
|
agent = PPOAgent(env).to(device)
|
|
else:
|
|
agent = torch.load(args.load_dir)
|
|
print("Load Agent", args.load_dir)
|
|
print(agent.eval())
|
|
|
|
optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5)
|
|
|
|
# Tensorboard and WandB Recorder
|
|
game_name = "Aimbot_Target"
|
|
game_type = "OffPolicy"
|
|
run_name = f"{game_name}_{game_type}_{args.seed}_{int(time.time())}"
|
|
if args.wandb_track:
|
|
wandb.init(
|
|
project=game_name,
|
|
entity=args.wandb_entity,
|
|
sync_tensorboard=True,
|
|
config=vars(args),
|
|
name=run_name,
|
|
monitor_gym=True,
|
|
save_code=True,
|
|
)
|
|
|
|
writer = SummaryWriter(f"runs/{run_name}")
|
|
writer.add_text(
|
|
"hyperparameters",
|
|
"|param|value|\n|-|-|\n%s"
|
|
% ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
|
)
|
|
|
|
# Trajectory Buffer
|
|
ob_bf = [[] for i in range(env.unity_agent_num)]
|
|
act_bf = [[] for i in range(env.unity_agent_num)]
|
|
dis_logprobs_bf = [[] for i in range(env.unity_agent_num)]
|
|
con_logprobs_bf = [[] for i in range(env.unity_agent_num)]
|
|
rewards_bf = [[] for i in range(env.unity_agent_num)]
|
|
dones_bf = [[] for i in range(env.unity_agent_num)]
|
|
values_bf = [[] for i in range(env.unity_agent_num)]
|
|
|
|
# TRY NOT TO MODIFY: start the game
|
|
total_update_step = args.total_timesteps // args.datasetSize
|
|
global_step = 0
|
|
start_time = time.time()
|
|
state, _, done = env.reset()
|
|
# state = torch.Tensor(next_obs).to(device)
|
|
# next_done = torch.zeros(env.unity_agent_num).to(device)
|
|
|
|
for total_steps in range(total_update_step):
|
|
# discunt learning rate, while step == total_update_step lr will be 0
|
|
print("new episode")
|
|
if args.annealLR:
|
|
frac = 1.0 - (total_steps - 1.0) / total_update_step
|
|
lrnow = frac * args.lr
|
|
optimizer.param_groups[0]["lr"] = lrnow
|
|
|
|
# initialize empty training datasets
|
|
obs = torch.tensor([]).to(device) # (n,env.unity_observation_size)
|
|
actions = torch.tensor([]).to(device) # (n,env.unity_action_size)
|
|
dis_logprobs = torch.tensor([]).to(device) # (n,1)
|
|
con_logprobs = torch.tensor([]).to(device) # (n,1)
|
|
rewards = torch.tensor([]).to(device) # (n,1)
|
|
values = torch.tensor([]).to(device) # (n,1)
|
|
advantages = torch.tensor([]).to(device) # (n,1)
|
|
returns = torch.tensor([]).to(device) # (n,1)
|
|
|
|
# MAIN LOOP: run agent in environment
|
|
i = 0
|
|
training = False
|
|
while True:
|
|
if i % args.decision_period == 0:
|
|
step = round(i / args.decision_period)
|
|
# Choose action by agent
|
|
global_step += 1 * env.unity_agent_num
|
|
|
|
with torch.no_grad():
|
|
# predict actions
|
|
action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value(
|
|
torch.Tensor(state).to(device)
|
|
)
|
|
value = value.flatten()
|
|
|
|
# variable from GPU to CPU
|
|
action_cpu = action.cpu().numpy()
|
|
dis_logprob_cpu = dis_logprob.cpu().numpy()
|
|
con_logprob_cpu = con_logprob.cpu().numpy()
|
|
value_cpu = value.cpu().numpy()
|
|
# Environment step
|
|
next_state, reward, next_done = env.step(action_cpu)
|
|
|
|
# save memories
|
|
for i in range(env.unity_agent_num):
|
|
# save memories to buffers
|
|
ob_bf[i].append(state[i])
|
|
act_bf[i].append(action_cpu[i])
|
|
dis_logprobs_bf[i].append(dis_logprob_cpu[i])
|
|
con_logprobs_bf[i].append(con_logprob_cpu[i])
|
|
rewards_bf[i].append(reward[i])
|
|
dones_bf[i].append(done[i])
|
|
values_bf[i].append(value_cpu[i])
|
|
if next_done[i] == True:
|
|
# finished a round, send finished memories to training datasets
|
|
# compute advantage and discounted reward
|
|
print(i,"over")
|
|
adv, rt = GAE(
|
|
agent,
|
|
args,
|
|
torch.tensor(rewards_bf[i]).to(device),
|
|
torch.Tensor(dones_bf[i]).to(device),
|
|
torch.tensor(values_bf[i]).to(device),
|
|
torch.tensor(next_state[i]).to(device),
|
|
torch.Tensor([next_done[i]]).to(device),
|
|
)
|
|
# send memories to training datasets
|
|
obs = torch.cat((obs, torch.tensor(ob_bf[i]).to(device)), 0)
|
|
actions = torch.cat((actions, torch.tensor(act_bf[i]).to(device)), 0)
|
|
dis_logprobs = torch.cat(
|
|
(dis_logprobs, torch.tensor(dis_logprobs_bf[i]).to(device)), 0
|
|
)
|
|
con_logprobs = torch.cat(
|
|
(con_logprobs, torch.tensor(con_logprobs_bf[i]).to(device)), 0
|
|
)
|
|
rewards = torch.cat((rewards, torch.tensor(rewards_bf[i]).to(device)), 0)
|
|
values = torch.cat((values, torch.tensor(values_bf[i]).to(device)), 0)
|
|
advantages = torch.cat((advantages, adv), 0)
|
|
returns = torch.cat((returns, rt), 0)
|
|
|
|
# clear buffers
|
|
ob_bf[i] = []
|
|
act_bf[i] = []
|
|
dis_logprobs_bf[i] = []
|
|
con_logprobs_bf[i] = []
|
|
rewards_bf[i] = []
|
|
dones_bf[i] = []
|
|
values_bf[i] = []
|
|
print(f"train dataset added:{obs.size()[0]}/{args.datasetSize}")
|
|
|
|
if obs.size()[0] >= args.datasetSize:
|
|
# start train NN
|
|
break
|
|
state, done = next_state, next_done
|
|
else:
|
|
# skip this step use last predict action
|
|
next_obs, reward, next_done = env.step(action_cpu)
|
|
# save memories
|
|
for i in range(env.unity_agent_num):
|
|
if next_done[i] == True:
|
|
print(i,"over???")
|
|
# save last memories to buffers
|
|
ob_bf[i].append(state[i])
|
|
act_bf[i].append(action_cpu[i])
|
|
dis_logprobs_bf[i].append(dis_logprob_cpu[i])
|
|
con_logprobs_bf[i].append(con_logprob_cpu[i])
|
|
rewards_bf[i].append(reward[i])
|
|
dones_bf[i].append(done[i])
|
|
values_bf[i].append(value_cpu[i])
|
|
# finished a round, send finished memories to training datasets
|
|
# compute advantage and discounted reward
|
|
adv, rt = GAE(
|
|
agent,
|
|
args,
|
|
torch.tensor(rewards_bf[i]).to(device),
|
|
torch.Tensor(dones_bf[i]).to(device),
|
|
torch.tensor(values_bf[i]).to(device),
|
|
torch.tensor(next_state[i]).to(device),
|
|
torch.Tensor([next_done[i]]).to(device),
|
|
)
|
|
# send memories to training datasets
|
|
obs = torch.cat((obs, torch.tensor(ob_bf[i]).to(device)), 0)
|
|
actions = torch.cat((actions, torch.tensor(act_bf[i]).to(device)), 0)
|
|
dis_logprobs = torch.cat(
|
|
(dis_logprobs, torch.tensor(dis_logprobs_bf[i]).to(device)), 0
|
|
)
|
|
con_logprobs = torch.cat(
|
|
(con_logprobs, torch.tensor(con_logprobs_bf[i]).to(device)), 0
|
|
)
|
|
rewards = torch.cat((rewards, torch.tensor(rewards_bf[i]).to(device)), 0)
|
|
values = torch.cat((values, torch.tensor(values_bf[i]).to(device)), 0)
|
|
advantages = torch.cat((advantages, adv), 0)
|
|
returns = torch.cat((returns, rt), 0)
|
|
|
|
# clear buffers
|
|
ob_bf[i] = []
|
|
act_bf[i] = []
|
|
dis_logprobs_bf[i] = []
|
|
con_logprobs_bf[i] = []
|
|
rewards_bf[i] = []
|
|
dones_bf[i] = []
|
|
values_bf[i] = []
|
|
print(f"train dataset added:{obs.size()[0]}/{args.datasetSize}")
|
|
state, done = next_state, next_done
|
|
i += 1
|
|
|
|
if args.train:
|
|
# flatten the batch
|
|
b_obs = obs.reshape((-1,) + env.unity_observation_shape)
|
|
b_dis_logprobs = dis_logprobs.reshape(-1)
|
|
b_con_logprobs = con_logprobs.reshape(-1)
|
|
b_actions = actions.reshape((-1,) + (env.unity_action_size,))
|
|
b_advantages = advantages.reshape(-1)
|
|
b_returns = returns.reshape(-1)
|
|
b_values = values.reshape(-1)
|
|
b_size = b_obs.size()[0]
|
|
# Optimizing the policy and value network
|
|
b_inds = np.arange(b_size)
|
|
# clipfracs = []
|
|
for epoch in range(args.epochs):
|
|
# shuffle all datasets
|
|
np.random.shuffle(b_inds)
|
|
for start in range(0, b_size, args.minibatchSize):
|
|
end = start + args.minibatchSize
|
|
mb_inds = b_inds[start:end]
|
|
mb_advantages = b_advantages[mb_inds]
|
|
|
|
# normalize advantages
|
|
if args.norm_adv:
|
|
mb_advantages = (mb_advantages - mb_advantages.mean()) / (
|
|
mb_advantages.std() + 1e-8
|
|
)
|
|
|
|
(
|
|
_,
|
|
new_dis_logprob,
|
|
dis_entropy,
|
|
new_con_logprob,
|
|
con_entropy,
|
|
newvalue,
|
|
) = agent.get_actions_value(b_obs[mb_inds], b_actions[mb_inds])
|
|
# discrete ratio
|
|
dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
|
|
dis_ratio = dis_logratio.exp()
|
|
# continuous ratio
|
|
con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
|
|
con_ratio = con_logratio.exp()
|
|
|
|
"""
|
|
# early stop
|
|
with torch.no_grad():
|
|
# calculate approx_kl http://joschu.net/blog/kl-approx.html
|
|
old_approx_kl = (-logratio).mean()
|
|
approx_kl = ((ratio - 1) - logratio).mean()
|
|
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
|
|
"""
|
|
|
|
# discrete Policy loss
|
|
dis_pg_loss_orig = -mb_advantages * dis_ratio
|
|
dis_pg_loss_clip = -mb_advantages * torch.clamp(
|
|
dis_ratio, 1 - args.clip_coef, 1 + args.clip_coef
|
|
)
|
|
dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
|
|
# continuous Policy loss
|
|
con_pg_loss_orig = -mb_advantages * con_ratio
|
|
con_pg_loss_clip = -mb_advantages * torch.clamp(
|
|
con_ratio, 1 - args.clip_coef, 1 + args.clip_coef
|
|
)
|
|
con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()
|
|
|
|
# Value loss
|
|
newvalue = newvalue.view(-1)
|
|
if args.clip_vloss:
|
|
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
|
|
v_clipped = b_values[mb_inds] + torch.clamp(
|
|
newvalue - b_values[mb_inds],
|
|
-args.clip_coef,
|
|
args.clip_coef,
|
|
)
|
|
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
|
|
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
|
|
v_loss = 0.5 * v_loss_max.mean()
|
|
else:
|
|
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
|
|
|
|
# total loss
|
|
entropy_loss = dis_entropy.mean() + con_entropy.mean()
|
|
loss = (
|
|
dis_pg_loss * args.policy_coef
|
|
+ con_pg_loss * args.policy_coef
|
|
- entropy_loss * args.ent_coef
|
|
+ v_loss * args.critic_coef
|
|
)
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
# Clips gradient norm of an iterable of parameters.
|
|
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
|
optimizer.step()
|
|
|
|
"""
|
|
if args.target_kl is not None:
|
|
if approx_kl > args.target_kl:
|
|
break
|
|
"""
|
|
# record rewards for plotting purposes
|
|
rewardsMean = np.mean(rewards.to("cpu").detach().numpy().copy())
|
|
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
|
|
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
|
|
writer.add_scalar("losses/dis_policy_loss", dis_pg_loss.item(), global_step)
|
|
writer.add_scalar("losses/con_policy_loss", con_pg_loss.item(), global_step)
|
|
writer.add_scalar("losses/total_loss", loss.item(), global_step)
|
|
writer.add_scalar("losses/entropy_loss", entropy_loss.item(), global_step)
|
|
# writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
|
|
# writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
|
|
# writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
|
|
# print("SPS:", int(global_step / (time.time() - start_time)))
|
|
print("episode over mean reward:", rewardsMean)
|
|
writer.add_scalar(
|
|
"charts/SPS", int(global_step / (time.time() - start_time)), global_step
|
|
)
|
|
writer.add_scalar("charts/Reward", rewardsMean, global_step)
|
|
writer.add_scalar("charts/GoWinRatio", WinRounds["Go"]/TotalRounds["Go"], global_step)
|
|
writer.add_scalar("charts/AttackWinRatio", WinRounds["Attack"]/TotalRounds["Attack"], global_step)
|
|
writer.add_scalar("charts/FreeWinRatio", WinRounds["Free"]/TotalRounds["Free"], global_step)
|
|
if rewardsMean > bestReward:
|
|
bestReward = rewardsMean
|
|
saveDir = "../PPO-Model/Target-700-500-256-hybrid-" + str(rewardsMean) + ".pt"
|
|
torch.save(agent, saveDir)
|
|
|
|
env.close()
|
|
writer.close()
|