Aimbot-PPO/Aimbot-PPO-Python/aimBotEnv.py
Koha9 763d704efd Add Save model weights immediately future
add save button@Unity then send "saveNow" Toggle to Python.
delete useless method "saveModel" and "loadModel". Use Save/load weights instead.
2022-09-05 21:22:34 +09:00

98 lines
4.4 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import mlagents_envs
from mlagents_envs.base_env import ActionTuple
from mlagents_envs.environment import UnityEnvironment
import numpy as np
class makeEnv(object):
def __init__(self,envPath,workerID,basePort):
self.env = UnityEnvironment(file_name=envPath,seed = 1,side_channels=[],worker_id = workerID,base_port=basePort)
self.env.reset()
# get enviroment specs
self.LOAD_DIR_SIZE_IN_STATE = 3
self.TRACKED_AGENT = -1
self.BEHA_SPECS = self.env.behavior_specs
self.BEHA_NAME = list(self.BEHA_SPECS)[0]
self.SPEC = self.BEHA_SPECS[self.BEHA_NAME]
self.OBSERVATION_SPECS = self.SPEC.observation_specs[0] # observation spec
self.ACTION_SPEC = self.SPEC.action_spec # action specs
self.DISCRETE_SIZE = self.ACTION_SPEC.discrete_size# 連続的な動作のSize
self.CONTINUOUS_SIZE = self.ACTION_SPEC.continuous_size# 離散的な動作のSize
self.STATE_SIZE = self.OBSERVATION_SPECS.shape[0] - self.LOAD_DIR_SIZE_IN_STATE# 環境観測データ数
print("√√√√√Enviroment Initialized Success√√√√√")
def step(self,discreteActions = None,continuousActions = None,behaviorName = None,trackedAgent = None):
# take action to enviroment
# return mextState,reward,done
# check if arg is include None or IS None
try:
isDisNone = discreteActions.any() == None
if discreteActions.all() == None:
print("step() Error!:discreteActions include None")
except:
isDisNone = True
try:
isConNone = continuousActions.any() == None
if continuousActions.all() == None:
print("step() Error!:continuousActions include None")
except:
isConNone = True
if isDisNone:
# if discreteActions is enpty just give nothing[[0]] to Enviroment
discreteActions = np.array([[0]], dtype=np.int)
if isConNone:
# if continuousActions is enpty just give nothing[[0]] to Enviroment
continuousActions = np.array([[0]], dtype=np.float)
if behaviorName == None:
behaviorName = self.BEHA_NAME
if trackedAgent == None:
trackedAgent = self.TRACKED_AGENT
#create actionTuple
thisActionTuple = ActionTuple(continuous=continuousActions,discrete=discreteActions)
# take action to env
self.env.set_actions(behavior_name=behaviorName,action=thisActionTuple)
self.env.step()
# get nextState & reward & done after this action
nextState,reward,done,loadDir, saveNow = self.getSteps(behaviorName,trackedAgent)
return nextState,reward,done,loadDir, saveNow
def getSteps(self,behaviorName = None,trackedAgent = None):
# get nextState & reward & done
if behaviorName == None:
behaviorName = self.BEHA_NAME
decisionSteps,terminalSteps = self.env.get_steps(behaviorName)
if self.TRACKED_AGENT == -1 and len(decisionSteps) >= 1:
self.TRACKED_AGENT = decisionSteps.agent_id[0]
if trackedAgent == None:
trackedAgent = self.TRACKED_AGENT
if trackedAgent in decisionSteps: # ゲーム終了していない場合、環境状態がdecision_stepsに保存される
nextState = decisionSteps[trackedAgent].obs[0]
nextState = np.reshape(nextState,[1,self.STATE_SIZE+self.LOAD_DIR_SIZE_IN_STATE])
saveNow = nextState[0][-1]
loadDir = nextState[0][-3:-1]
nextState = nextState[0][:-3]
reward = decisionSteps[trackedAgent].reward
done = False
if trackedAgent in terminalSteps: # ゲーム終了した場合、環境状態がterminal_stepsに保存される
nextState = terminalSteps[trackedAgent].obs[0]
nextState = np.reshape(nextState,[1,self.STATE_SIZE+self.LOAD_DIR_SIZE_IN_STATE])
saveNow = nextState[0][-1]
loadDir = nextState[0][-3:-1]
nextState = nextState[0][:-3]
reward = terminalSteps[trackedAgent].reward
done = True
return nextState, reward, done, loadDir, saveNow
def reset(self):
self.env.reset()
nextState,reward,done,loadDir,saveNow = self.getSteps()
return nextState,reward,done,loadDir,saveNow
def render(self):
self.env.render()