Compare commits

..

2 Commits

Author SHA1 Message Date
4b8ffeac6d GAIL V0.1 save point
GAIL V0.1 save point
todo 
1.human action record(GAILMem) debug
2.gail debug
2022-12-04 08:42:10 +09:00
ad9817e7a4 Totally disparate NN by target
Totally disparate NN by target.
2022-12-03 21:35:33 +09:00
31 changed files with 2453 additions and 3516 deletions

2
.gitignore vendored
View File

@ -76,8 +76,6 @@ crashlytics-build.properties
/Aimbot-PPO-Python/.vscode/
/Aimbot-PPO-Python/.mypy_cache/
/Aimbot-PPO-Python/__pycache__/
/Aimbot-PPO-Python/wandb/
/Aimbot-PPO-Python/runs/
/Aimbot-PPO-Python/Tensorflow/__pycache__/
/Aimbot-PPO-Python/Pytorch/__pycache__/
/Aimbot-PPO-Python/Pytorch/runs/

View File

@ -1,5 +0,0 @@
{
"python.linting.enabled": false,
"python.analysis.typeCheckingMode": "off",
"commentTranslate.source": "intellsmi.deepl-translate-deepl"
}

View File

@ -1,3 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml

View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="mlagents39" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@ -1,10 +0,0 @@
<component name="ProjectDictionaryState">
<dictionary name="UCUNI">
<words>
<w>aimbot</w>
<w>logprobs</w>
<w>logstd</w>
<w>unclipped</w>
</words>
</dictionary>
</component>

View File

@ -1,6 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

View File

@ -1,4 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="mlagents39" project-jdk-type="Python SDK" />
</project>

View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/Pytorch.iml" filepath="$PROJECT_DIR$/.idea/Pytorch.iml" />
</modules>
</component>
</project>

View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/../.." vcs="Git" />
</component>
</project>

View File

@ -1,34 +1,26 @@
import gym
import numpy as np
import uuid
import airecorder
from numpy import ndarray
from mlagents_envs.base_env import ActionTuple
from mlagents_envs.environment import UnityEnvironment
from typing import Tuple, List
from mlagents_envs.side_channel.side_channel import (
SideChannel,
IncomingMessage,
OutgoingMessage,
)
from arguments import set_save_model
class Aimbot(gym.Env):
def __init__(
self,
env_path: str,
worker_id: int = 1,
base_port: int = 100,
side_channels: list = []
self,
envPath: str,
workerID: int = 1,
basePort: int = 100,
side_channels: list = []
):
super(Aimbot, self).__init__()
self.env = UnityEnvironment(
file_name=env_path,
file_name=envPath,
seed=1,
side_channels=side_channels,
worker_id=worker_id,
base_port=base_port,
worker_id=workerID,
base_port=basePort,
)
self.env.reset()
# all behavior_specs
@ -42,7 +34,7 @@ class Aimbot(gym.Env):
# environment action specs
self.unity_action_spec = self.unity_specs.action_spec
# environment sample observation
decision_steps, _ = self.env.get_steps(self.unity_beha_name)
decisionSteps, _ = self.env.get_steps(self.unity_beha_name)
# OBSERVATION SPECS
# environment state shape. like tuple:(93,)
@ -65,34 +57,31 @@ class Aimbot(gym.Env):
# AGENT SPECS
# all agents ID
self.unity_agent_IDS = decision_steps.agent_id
self.unity_agent_IDS = decisionSteps.agent_id
# agents number
self.unity_agent_num = len(self.unity_agent_IDS)
# all zero action
self.all_zero_action = np.zeros((self.unity_agent_num, self.unity_action_size))
def reset(self) -> Tuple[np.ndarray, List, List]:
"""reset environment and get observations
def reset(self):
"""reset enviroment and get observations
Returns:
ndarray: next_state, reward, done, loadDir, saveNow
ndarray: nextState, reward, done, loadDir, saveNow
"""
# reset env
self.env.reset()
next_state, reward, done = self.get_steps()
return next_state, reward, done
nextState, reward, done = self.getSteps()
return nextState, reward, done
# TODO:
# delete all stack state DONE
# get-step State disassembly function DONE
# getstep State disassembly function DONE
# delete agent selection function DONE
# self.step action wrapper function DONE
def step(
self,
actions: ndarray,
) -> Tuple[np.ndarray, List, List]:
"""change actions list to ActionTuple then send it to environment
self,
actions: ndarray,
):
"""change ations list to ActionTuple then send it to enviroment
Args:
actions (ndarray): PPO chooseAction output action list.(agentNum,actionNum)
@ -100,36 +89,36 @@ class Aimbot(gym.Env):
Returns:
ndarray: nextState, reward, done
"""
# take action to environment
# take action to enviroment
# return mextState,reward,done
# discrete action
if self.unity_dis_act_exist:
# create discrete action from actions list
discrete_actions = actions[:, 0: self.unity_discrete_type]
discreteActions = actions[:, 0 : self.unity_discrete_type]
else:
# create empty discrete action
discrete_actions = np.asarray([[0]])
discreteActions = np.asarray([[0]])
# continuous action
if self.unity_con_act_exist:
# create continuous actions from actions list
continuous_actions = actions[:, self.unity_discrete_type:]
continuousActions = actions[:, self.unity_discrete_type :]
else:
# create empty continuous action
continuous_actions = np.asanyarray([[0.0]])
continuousActions = np.asanyarray([[0.0]])
# Dummy continuous action
# continuousActions = np.asanyarray([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]])
# create actionTuple
this_action_tuple = ActionTuple(continuous=continuous_actions, discrete=discrete_actions)
thisActionTuple = ActionTuple(continuous=continuousActions, discrete=discreteActions)
# take action to env
self.env.set_actions(behavior_name=self.unity_beha_name, action=this_action_tuple)
self.env.set_actions(behavior_name=self.unity_beha_name, action=thisActionTuple)
self.env.step()
# get nextState & reward & done after this action
next_states, rewards, dones = self.get_steps()
return next_states, rewards, dones
nextStates, rewards, dones = self.getSteps()
return nextStates, rewards, dones
def get_steps(self) -> Tuple[np.ndarray, List, List]:
"""get environment now observations.
def getSteps(self):
"""get enviroment now observations.
Include State, Reward, Done
Args:
@ -138,99 +127,28 @@ class Aimbot(gym.Env):
ndarray: nextState, reward, done
"""
# get nextState & reward & done
decision_steps, terminal_steps = self.env.get_steps(self.unity_beha_name)
next_states = []
decisionSteps, terminalSteps = self.env.get_steps(self.unity_beha_name)
nextStates = []
dones = []
rewards = []
for this_agent_ID in self.unity_agent_IDS:
for thisAgentID in self.unity_agent_IDS:
# while Episode over agentID will both in decisionSteps and terminalSteps.
# avoid redundant state and reward,
# use agentExist toggle to check if agent is already exist.
agent_exist = False
agentExist = False
# game done
if this_agent_ID in terminal_steps:
next_states.append(terminal_steps[this_agent_ID].obs[0])
if thisAgentID in terminalSteps:
nextStates.append(terminalSteps[thisAgentID].obs[0])
dones.append(True)
rewards.append(terminal_steps[this_agent_ID].reward)
agent_exist = True
rewards.append(terminalSteps[thisAgentID].reward)
agentExist = True
# game not over yet and agent not in terminalSteps
if (this_agent_ID in decision_steps) and (not agent_exist):
next_states.append(decision_steps[this_agent_ID].obs[0])
if (thisAgentID in decisionSteps) and (not agentExist):
nextStates.append(decisionSteps[thisAgentID].obs[0])
dones.append(False)
rewards.append(decision_steps[this_agent_ID].reward)
rewards.append(decisionSteps[thisAgentID].reward)
return np.asarray(next_states), rewards, dones
return np.asarray(nextStates), rewards, dones
def close(self):
self.env.close()
class AimbotSideChannel(SideChannel):
def __init__(self, channel_id: uuid.UUID) -> None:
super().__init__(channel_id)
def on_message_received(self, msg: IncomingMessage) -> None:
"""
Note: We must implement this method of the SideChannel interface to
receive messages from Unity
Message will be sent like this:
"Warning|Message1|Message2|Message3" or
"Error|Message1|Message2|Message3"
"""
this_message_Original = msg.read_string()
this_message = this_message_Original.split("|")
print(this_message)
if this_message[0] == "Warning":
if this_message[1] == "Result":
airecorder.total_rounds[this_message[2]] += 1
if this_message[3] == "Win":
airecorder.win_rounds[this_message[2]] += 1
# print(TotalRounds)
# print(WinRounds)
if this_message[1] == "Command":
set_save_model(True)
print("Command: " + this_message_Original)
elif this_message[0] == "Error":
print(this_message_Original)
# # while Message type is Warning
# if(thisResult[0] == "Warning"):
# # while Message1 is result means one game is over
# if (thisResult[1] == "Result"):
# TotalRounds[thisResult[2]]+=1
# # while Message3 is Win means this agent win this game
# if(thisResult[3] == "Win"):
# WinRounds[thisResult[2]]+=1
# # while Message1 is GameState means this game is just start
# # and tell python which game mode is
# elif (thisResult[1] == "GameState"):
# SCrecieved = 1
# # while Message type is Error
# elif(thisResult[0] == "Error"):
# print(thisMessage)
# 发送函数
def send_string(self, data: str) -> None:
# send a string toC#
msg = OutgoingMessage()
msg.write_string(data)
super().queue_message_to_send(msg)
def send_bool(self, data: bool) -> None:
msg = OutgoingMessage()
msg.write_bool(data)
super().queue_message_to_send(msg)
def send_int(self, data: int) -> None:
msg = OutgoingMessage()
msg.write_int32(data)
super().queue_message_to_send(msg)
def send_float(self, data: float) -> None:
msg = OutgoingMessage()
msg.write_float32(data)
super().queue_message_to_send(msg)
def send_float_list(self, data: List[float]) -> None:
msg = OutgoingMessage()
msg.write_float32_list(data)
super().queue_message_to_send(msg)

View File

@ -1,769 +0,0 @@
import argparse
import wandb
import time
import numpy as np
import random
import uuid
import torch
import torch.nn as nn
import torch.optim as optim
import atexit
from torchviz import make_dot, make_dot_from_trace
from AimbotEnv import Aimbot
from tqdm import tqdm
from enum import Enum
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from distutils.util import strtobool
from torch.utils.tensorboard import SummaryWriter
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.side_channel import (
SideChannel,
IncomingMessage,
OutgoingMessage,
)
from typing import List
bestReward = -1
DEFAULT_SEED = 9331
ENV_PATH = "../Build/Build-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel-EndReward-Easy-V2.7-FreeOnly-NormalMapSize/Aimbot-ParallelEnv"
SIDE_CHANNEL_UUID = uuid.UUID("8bbfb62a-99b4-457c-879d-b78b69066b5e")
WAND_ENTITY = "koha9"
WORKER_ID = 2
BASE_PORT = 1111
# max round steps per agent is 2500/Decision_period, 25 seconds
# !!!check every parameters before run!!!
TOTAL_STEPS = 3150000
BATCH_SIZE = 1024
MAX_TRAINNING_DATASETS = 6000
DECISION_PERIOD = 1
LEARNING_RATE = 5e-4
GAMMA = 0.99
GAE_LAMBDA = 0.95
EPOCHS = 3
CLIP_COEF = 0.11
LOSS_COEF = [1.0, 1.0, 1.0, 1.0] # free go attack defence
POLICY_COEF = [1.0, 1.0, 1.0, 1.0]
ENTROPY_COEF = [0.05, 0.05, 0.05, 0.05]
CRITIC_COEF = [0.5, 0.5, 0.5, 0.5]
TARGET_LEARNING_RATE = 1e-6
FREEZE_VIEW_NETWORK = False
ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = True
TRAIN = True
SAVE_MODEL = False
WANDB_TACK = False
LOAD_DIR = None
#LOAD_DIR = "../PPO-Model/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670986948-freeonly-20/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670986948_0.7949778.pt"
# public data
class Targets(Enum):
Free = 0
Go = 1
Attack = 2
Defence = 3
Num = 4
TARGET_STATE_SIZE = 6
INAREA_STATE_SIZE = 1
TIME_STATE_SIZE = 1
GUN_STATE_SIZE = 1
MY_STATE_SIZE = 4
TOTAL_T_SIZE = TARGET_STATE_SIZE+INAREA_STATE_SIZE+TIME_STATE_SIZE+GUN_STATE_SIZE+MY_STATE_SIZE
BASE_WINREWARD = 999
BASE_LOSEREWARD = -999
TARGETNUM= 4
ENV_TIMELIMIT = 30
RESULT_BROADCAST_RATIO = 1/ENV_TIMELIMIT
TotalRounds = {"Free":0,"Go":0,"Attack":0}
WinRounds = {"Free":0,"Go":0,"Attack":0}
# !!!SPECIAL PARAMETERS!!!
# change it while program is finished
using_targets_num = 3
def parse_args():
# fmt: off
# pytorch and environment parameters
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
help="seed of the experiment")
parser.add_argument("--path", type=str, default=ENV_PATH,
help="enviroment path")
parser.add_argument("--workerID", type=int, default=WORKER_ID,
help="unity worker ID")
parser.add_argument("--baseport", type=int, default=BASE_PORT,
help="port to connect to Unity environment")
parser.add_argument("--lr", type=float, default=LEARNING_RATE,
help="the learning rate of optimizer")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
help="total timesteps of the experiments")
# model parameters
parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True,
help="Train Model or not")
parser.add_argument("--freeze-viewnet", type=lambda x: bool(strtobool(x)), default=FREEZE_VIEW_NETWORK, nargs="?", const=True,
help="freeze view network or not")
parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS,
help="training dataset size,start training while dataset collect enough data")
parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE,
help="nimi batch size")
parser.add_argument("--epochs", type=int, default=EPOCHS,
help="the K epochs to update the policy")
parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
help="track on the wandb")
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=SAVE_MODEL, nargs="?", const=True,
help="save model or not")
parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
help="the entity (team) of wandb's project")
parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
help="load model directory")
parser.add_argument("--decision-period", type=int, default=DECISION_PERIOD,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--result-broadcast-ratio", type=float, default=RESULT_BROADCAST_RATIO,
help="broadcast result when win round is reached,r=result-broadcast-ratio*remainTime")
# GAE loss
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=NORM_ADV, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--gamma", type=float, default=GAMMA,
help="the discount factor gamma")
parser.add_argument("--gaeLambda", type=float, default=GAE_LAMBDA,
help="the lambda for the general advantage estimation")
parser.add_argument("--clip-coef", type=float, default=CLIP_COEF,
help="the surrogate clipping coefficient")
parser.add_argument("--policy-coef", type=float, default=POLICY_COEF,
help="coefficient of the policy")
parser.add_argument("--ent-coef", type=float, default=ENTROPY_COEF,
help="coefficient of the entropy")
parser.add_argument("--critic-coef", type=float, default=CRITIC_COEF,
help="coefficient of the value function")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=CLIP_VLOSS, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
# fmt: on
args = parser.parse_args()
return args
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class PPOAgent(nn.Module):
def __init__(self, env: Aimbot,targetNum:int):
super(PPOAgent, self).__init__()
self.targetNum = targetNum
self.stateSize = env.unity_observation_shape[0]
self.agentNum = env.unity_agent_num
self.targetSize = TARGET_STATE_SIZE
self.timeSize = TIME_STATE_SIZE
self.gunSize = GUN_STATE_SIZE
self.myStateSize = MY_STATE_SIZE
self.raySize = env.unity_observation_shape[0] - TOTAL_T_SIZE
self.nonRaySize = TOTAL_T_SIZE
self.head_input_size = env.unity_observation_shape[0] - self.targetSize-self.timeSize-self.gunSize# except target state input
self.discrete_size = env.unity_discrete_size
self.discrete_shape = list(env.unity_discrete_branches)
self.continuous_size = env.unity_continuous_size
self.viewNetwork = nn.Sequential(
layer_init(nn.Linear(self.raySize, 200)),
nn.Tanh()
)
self.targetNetworks = nn.ModuleList([nn.Sequential(
layer_init(nn.Linear(self.nonRaySize, 100)),
nn.Tanh()
)for i in range(targetNum)])
self.middleNetworks = nn.ModuleList([nn.Sequential(
layer_init(nn.Linear(300,200)),
nn.Tanh()
)for i in range(targetNum)])
self.actor_dis = nn.ModuleList([layer_init(nn.Linear(200, self.discrete_size), std=0.5) for i in range(targetNum)])
self.actor_mean = nn.ModuleList([layer_init(nn.Linear(200, self.continuous_size), std=0.5) for i in range(targetNum)])
# self.actor_logstd = nn.ModuleList([layer_init(nn.Linear(200, self.continuous_size), std=1) for i in range(targetNum)])
# self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))
self.actor_logstd = nn.ParameterList([nn.Parameter(torch.zeros(1,self.continuous_size))for i in range(targetNum)]) # nn.Parameter(torch.zeros(1, self.continuous_size))
self.critic = nn.ModuleList([layer_init(nn.Linear(200, 1), std=1)for i in range(targetNum)])
def get_value(self, state: torch.Tensor):
target = state[:,0].to(torch.int32) # int
thisStateNum = target.size()[0]
viewInput = state[:,-self.raySize:] # all ray input
targetInput = state[:,:self.nonRaySize]
viewLayer = self.viewNetwork(viewInput)
targetLayer = torch.stack([self.targetNetworks[target[i]](targetInput[i]) for i in range(thisStateNum)])
middleInput = torch.cat([viewLayer,targetLayer],dim = 1)
middleLayer = torch.stack([self.middleNetworks[target[i]](middleInput[i]) for i in range(thisStateNum)])
criticV = torch.stack([self.critic[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.critic
return criticV
def get_actions_value(self, state: torch.Tensor, actions=None):
target = state[:,0].to(torch.int32) # int
thisStateNum = target.size()[0]
viewInput = state[:,-self.raySize:] # all ray input
targetInput = state[:,:self.nonRaySize]
viewLayer = self.viewNetwork(viewInput)
targetLayer = torch.stack([self.targetNetworks[target[i]](targetInput[i]) for i in range(thisStateNum)])
middleInput = torch.cat([viewLayer,targetLayer],dim = 1)
middleLayer = torch.stack([self.middleNetworks[target[i]](middleInput[i]) for i in range(thisStateNum)])
# discrete
# 递归targets的数量,既agent数来实现根据target不同来选用对应的输出网络计算输出
dis_logits = torch.stack([self.actor_dis[target[i]](middleLayer[i]) for i in range(thisStateNum)])
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
# continuous
actions_mean = torch.stack([self.actor_mean[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.actor_mean(hidden)
# action_logstd = torch.stack([self.actor_logstd[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.actor_logstd(hidden)
# action_logstd = self.actor_logstd.expand_as(actions_mean) # self.actor_logstd.expand_as(actions_mean)
action_logstd = torch.stack([torch.squeeze(self.actor_logstd[target[i]],0) for i in range(thisStateNum)])
# print(action_logstd)
action_std = torch.exp(action_logstd) # torch.exp(action_logstd)
con_probs = Normal(actions_mean, action_std)
# critic
criticV = torch.stack([self.critic[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.critic
if actions is None:
if args.train:
# select actions base on probability distribution model
disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
conAct = con_probs.sample()
actions = torch.cat([disAct.T, conAct], dim=1)
else:
# select actions base on best probability distribution
disAct = torch.stack([torch.argmax(logit, dim=1) for logit in split_logits])
conAct = actions_mean
actions = torch.cat([disAct.T, conAct], dim=1)
else:
disAct = actions[:, 0 : env.unity_discrete_type].T
conAct = actions[:, env.unity_discrete_type :]
dis_log_prob = torch.stack(
[ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]
)
dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
return (
actions,
dis_log_prob.sum(0),
dis_entropy.sum(0),
con_probs.log_prob(conAct).sum(1),
con_probs.entropy().sum(1),
criticV,
)
def GAE(agent, args, rewards, dones, values, next_obs, next_done):
# GAE
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
data_size = rewards.size()[0]
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(data_size)):
if t == data_size - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = (
delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam
)
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(data_size)):
if t == data_size - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
return advantages, returns
class AimbotSideChannel(SideChannel):
def __init__(self, channel_id: uuid.UUID) -> None:
super().__init__(channel_id)
def on_message_received(self, msg: IncomingMessage) -> None:
"""
Note: We must implement this method of the SideChannel interface to
receive messages from Unity
"""
thisMessage = msg.read_string()
# print(thisMessage)
thisResult = thisMessage.split("|")
if(thisResult[0] == "result"):
TotalRounds[thisResult[1]]+=1
if(thisResult[2] == "Win"):
WinRounds[thisResult[1]]+=1
#print(TotalRounds)
#print(WinRounds)
elif(thisResult[0] == "Error"):
print(thisMessage)
# 发送函数
def send_string(self, data: str) -> None:
# send a string toC#
msg = OutgoingMessage()
msg.write_string(data)
super().queue_message_to_send(msg)
def send_bool(self, data: bool) -> None:
msg = OutgoingMessage()
msg.write_bool(data)
super().queue_message_to_send(msg)
def send_int(self, data: int) -> None:
msg = OutgoingMessage()
msg.write_int32(data)
super().queue_message_to_send(msg)
def send_float(self, data: float) -> None:
msg = OutgoingMessage()
msg.write_float32(data)
super().queue_message_to_send(msg)
def send_float_list(self, data: List[float]) -> None:
msg = OutgoingMessage()
msg.write_float32_list(data)
super().queue_message_to_send(msg)
def broadCastEndReward(rewardBF:list,remainTime:float):
thisRewardBF = rewardBF
if (rewardBF[-1]<=-500):
# print("Lose DO NOT BROAD CAST",rewardBF[-1])
thisRewardBF[-1] = rewardBF[-1]-BASE_LOSEREWARD
thisRewardBF = thisRewardBF
elif (rewardBF[-1]>=500):
# print("Win! Broadcast reward!",rewardBF[-1])
thisRewardBF[-1] = rewardBF[-1]-BASE_WINREWARD
thisRewardBF = (np.asarray(thisRewardBF)+(remainTime*args.result_broadcast_ratio)).tolist()
else:
print("!!!!!DIDNT GET RESULT REWARD!!!!!!",rewardBF[-1])
return torch.Tensor(thisRewardBF).to(device)
if __name__ == "__main__":
args = parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# Initialize environment anget optimizer
aimBotsideChannel = AimbotSideChannel(SIDE_CHANNEL_UUID);
env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport,side_channels=[aimBotsideChannel])
if args.load_dir is None:
agent = PPOAgent(env,TARGETNUM).to(device)
else:
agent = torch.load(args.load_dir)
# freeze
if args.freeze_viewnet:
# freeze the view network
for p in agent.viewNetwork.parameters():
p.requires_grad = False
print("VIEW NETWORK FREEZED")
print("Load Agent", args.load_dir)
print(agent.eval())
optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5)
# Tensorboard and WandB Recorder
game_name = "Aimbot_Target_Hybrid_PMNN_V2"
game_type = "OffPolicy_EndBC"
run_name = f"{game_name}_{game_type}_{args.seed}_{int(time.time())}"
if args.wandb_track:
wandb.init(
project=game_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s"
% ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
@atexit.register
def save_model():
# save model while exit
saveDir = "../PPO-Model/"+ run_name + "_last.pt"
torch.save(agent, saveDir)
print("save model to " + saveDir)
# Trajectory Buffer
ob_bf = [[] for i in range(env.unity_agent_num)]
act_bf = [[] for i in range(env.unity_agent_num)]
dis_logprobs_bf = [[] for i in range(env.unity_agent_num)]
con_logprobs_bf = [[] for i in range(env.unity_agent_num)]
rewards_bf = [[] for i in range(env.unity_agent_num)]
dones_bf = [[] for i in range(env.unity_agent_num)]
values_bf = [[] for i in range(env.unity_agent_num)]
# start the game
total_update_step = using_targets_num * args.total_timesteps // args.datasetSize
target_steps = [0 for i in range(TARGETNUM)]
start_time = time.time()
state, _, done = env.reset()
# state = torch.Tensor(next_obs).to(device)
# next_done = torch.zeros(env.unity_agent_num).to(device)
# initialize empty training datasets
obs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,env.unity_observation_size)
actions = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,env.unity_action_size)
dis_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
con_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
rewards = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
values = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
advantages = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
returns = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
vis_graph = make_dot(agent.get_actions_value(
torch.Tensor(state).to(device)
), params=dict(agent.named_parameters()))
vis_graph.view() # 会在当前目录下保存一个“Digraph.gv.pdf”文件并在默认浏览器中打开
with torch.onnx.set_training(agent, False):
trace, _ = torch.jit.get_trace_graph(agent, args=(torch.Tensor(state).to(device),))
make_dot_from_trace(trace)
raise
for total_steps in range(total_update_step):
# discunt learning rate, while step == total_update_step lr will be 0
if args.annealLR:
finalRatio = TARGET_LEARNING_RATE/args.lr
frac = 1.0 - ((total_steps + 1.0) / total_update_step)
lrnow = frac * args.lr
optimizer.param_groups[0]["lr"] = lrnow
else:
lrnow = args.lr
print("new episode",total_steps,"learning rate = ",lrnow)
# MAIN LOOP: run agent in environment
step = 0
training = False
trainQueue = []
last_reward = [0.for i in range(env.unity_agent_num)]
while True:
if step % args.decision_period == 0:
step += 1
# Choose action by agent
with torch.no_grad():
# predict actions
action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value(
torch.Tensor(state).to(device)
)
value = value.flatten()
# variable from GPU to CPU
action_cpu = action.cpu().numpy()
dis_logprob_cpu = dis_logprob.cpu().numpy()
con_logprob_cpu = con_logprob.cpu().numpy()
value_cpu = value.cpu().numpy()
# Environment step
next_state, reward, next_done = env.step(action_cpu)
# save memories
for i in range(env.unity_agent_num):
# save memories to buffers
ob_bf[i].append(state[i])
act_bf[i].append(action_cpu[i])
dis_logprobs_bf[i].append(dis_logprob_cpu[i])
con_logprobs_bf[i].append(con_logprob_cpu[i])
rewards_bf[i].append(reward[i]+last_reward[i])
dones_bf[i].append(done[i])
values_bf[i].append(value_cpu[i])
remainTime = state[i,TARGET_STATE_SIZE]
if next_done[i] == True:
# finished a round, send finished memories to training datasets
# compute advantage and discounted reward
#print(i,"over")
roundTargetType = int(state[i,0])
thisRewardsTensor = broadCastEndReward(rewards_bf[i],remainTime)
adv, rt = GAE(
agent,
args,
thisRewardsTensor,
torch.Tensor(dones_bf[i]).to(device),
torch.tensor(values_bf[i]).to(device),
torch.tensor(next_state[i]).to(device).unsqueeze(0),
torch.Tensor([next_done[i]]).to(device),
)
# send memories to training datasets
obs[roundTargetType] = torch.cat((obs[roundTargetType], torch.tensor(ob_bf[i]).to(device)), 0)
actions[roundTargetType] = torch.cat((actions[roundTargetType], torch.tensor(act_bf[i]).to(device)), 0)
dis_logprobs[roundTargetType] = torch.cat(
(dis_logprobs[roundTargetType], torch.tensor(dis_logprobs_bf[i]).to(device)), 0
)
con_logprobs[roundTargetType] = torch.cat(
(con_logprobs[roundTargetType], torch.tensor(con_logprobs_bf[i]).to(device)), 0
)
rewards[roundTargetType] = torch.cat((rewards[roundTargetType], thisRewardsTensor), 0)
values[roundTargetType] = torch.cat((values[roundTargetType], torch.tensor(values_bf[i]).to(device)), 0)
advantages[roundTargetType] = torch.cat((advantages[roundTargetType], adv), 0)
returns[roundTargetType] = torch.cat((returns[roundTargetType], rt), 0)
# clear buffers
ob_bf[i] = []
act_bf[i] = []
dis_logprobs_bf[i] = []
con_logprobs_bf[i] = []
rewards_bf[i] = []
dones_bf[i] = []
values_bf[i] = []
print(f"train dataset {Targets(roundTargetType).name} added:{obs[roundTargetType].size()[0]}/{args.datasetSize}")
for i in range(TARGETNUM):
if obs[i].size()[0] >= args.datasetSize:
# start train NN
trainQueue.append(i)
if(len(trainQueue)>0):
break
state, done = next_state, next_done
else:
step += 1
# skip this step use last predict action
next_state, reward, next_done = env.step(action_cpu)
# save memories
for i in range(env.unity_agent_num):
if next_done[i] == True:
#print(i,"over???")
# save memories to buffers
ob_bf[i].append(state[i])
act_bf[i].append(action_cpu[i])
dis_logprobs_bf[i].append(dis_logprob_cpu[i])
con_logprobs_bf[i].append(con_logprob_cpu[i])
rewards_bf[i].append(reward[i])
dones_bf[i].append(done[i])
values_bf[i].append(value_cpu[i])
remainTime = state[i,TARGET_STATE_SIZE]
# finished a round, send finished memories to training datasets
# compute advantage and discounted reward
roundTargetType = int(state[i,0])
thisRewardsTensor = broadCastEndReward(rewards_bf[i],remainTime)
adv, rt = GAE(
agent,
args,
thisRewardsTensor,
torch.Tensor(dones_bf[i]).to(device),
torch.tensor(values_bf[i]).to(device),
torch.Tensor(next_state[i]).to(device).unsqueeze(dim = 0),
torch.Tensor([next_done[i]]).to(device),
)
# send memories to training datasets
obs[roundTargetType] = torch.cat((obs[roundTargetType], torch.tensor(ob_bf[i]).to(device)), 0)
actions[roundTargetType] = torch.cat((actions[roundTargetType], torch.tensor(act_bf[i]).to(device)), 0)
dis_logprobs[roundTargetType] = torch.cat(
(dis_logprobs[roundTargetType], torch.tensor(dis_logprobs_bf[i]).to(device)), 0
)
con_logprobs[roundTargetType] = torch.cat(
(con_logprobs[roundTargetType], torch.tensor(con_logprobs_bf[i]).to(device)), 0
)
rewards[roundTargetType] = torch.cat((rewards[roundTargetType], thisRewardsTensor), 0)
values[roundTargetType] = torch.cat((values[roundTargetType], torch.tensor(values_bf[i]).to(device)), 0)
advantages[roundTargetType] = torch.cat((advantages[roundTargetType], adv), 0)
returns[roundTargetType] = torch.cat((returns[roundTargetType], rt), 0)
# clear buffers
ob_bf[i] = []
act_bf[i] = []
dis_logprobs_bf[i] = []
con_logprobs_bf[i] = []
rewards_bf[i] = []
dones_bf[i] = []
values_bf[i] = []
print(f"train dataset {Targets(roundTargetType).name} added:{obs[roundTargetType].size()[0]}/{args.datasetSize}")
state = next_state
last_reward = reward
i += 1
if args.train:
meanRewardList = [] # for WANDB
# loop all tarining queue
for thisT in trainQueue:
target_steps[thisT]+=1
# flatten the batch
b_obs = obs[thisT].reshape((-1,) + env.unity_observation_shape)
b_dis_logprobs = dis_logprobs[thisT].reshape(-1)
b_con_logprobs = con_logprobs[thisT].reshape(-1)
b_actions = actions[thisT].reshape((-1,) + (env.unity_action_size,))
b_advantages = advantages[thisT].reshape(-1)
b_returns = returns[thisT].reshape(-1)
b_values = values[thisT].reshape(-1)
b_size = b_obs.size()[0]
# Optimizing the policy and value network
b_inds = np.arange(b_size)
# clipfracs = []
for epoch in range(args.epochs):
print(epoch,end="")
# shuffle all datasets
np.random.shuffle(b_inds)
for start in range(0, b_size, args.minibatchSize):
print(".",end="")
end = start + args.minibatchSize
mb_inds = b_inds[start:end]
if(np.size(mb_inds)<=1):
break
mb_advantages = b_advantages[mb_inds]
# normalize advantages
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (
mb_advantages.std() + 1e-8
)
(
_,
new_dis_logprob,
dis_entropy,
new_con_logprob,
con_entropy,
newvalue,
) = agent.get_actions_value(b_obs[mb_inds], b_actions[mb_inds])
# discrete ratio
dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
dis_ratio = dis_logratio.exp()
# continuous ratio
con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
con_ratio = con_logratio.exp()
"""
# early stop
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
"""
# discrete Policy loss
dis_pg_loss_orig = -mb_advantages * dis_ratio
dis_pg_loss_clip = -mb_advantages * torch.clamp(
dis_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
# continuous Policy loss
con_pg_loss_orig = -mb_advantages * con_ratio
con_pg_loss_clip = -mb_advantages * torch.clamp(
con_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
# total loss
entropy_loss = dis_entropy.mean() + con_entropy.mean()
loss = (
dis_pg_loss * POLICY_COEF[thisT]
+ con_pg_loss * POLICY_COEF[thisT]
+ entropy_loss * ENTROPY_COEF[thisT]
+ v_loss * CRITIC_COEF[thisT]
)*LOSS_COEF[thisT]
if(torch.isnan(loss).any()):
print("LOSS Include NAN!!!")
if(torch.isnan(dis_pg_loss.any())):
print("dis_pg_loss include nan")
if(torch.isnan(con_pg_loss.any())):
print("con_pg_loss include nan")
if(torch.isnan(entropy_loss.any())):
print("entropy_loss include nan")
if(torch.isnan(v_loss.any())):
print("v_loss include nan")
raise
optimizer.zero_grad()
loss.backward()
# Clips gradient norm of an iterable of parameters.
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
"""
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
"""
# record mean reward before clear history
print("done")
targetRewardMean = np.mean(rewards[thisT].to("cpu").detach().numpy().copy())
meanRewardList.append(targetRewardMean)
targetName = Targets(thisT).name
# clear this target trainning set buffer
obs[thisT] = torch.tensor([]).to(device)
actions[thisT] = torch.tensor([]).to(device)
dis_logprobs[thisT] = torch.tensor([]).to(device)
con_logprobs[thisT] = torch.tensor([]).to(device)
rewards[thisT] = torch.tensor([]).to(device)
values[thisT] = torch.tensor([]).to(device)
advantages[thisT] = torch.tensor([]).to(device)
returns[thisT] = torch.tensor([]).to(device)
# record rewards for plotting purposes
writer.add_scalar(f"Target{targetName}/value_loss", v_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/dis_policy_loss", dis_pg_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/con_policy_loss", con_pg_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/total_loss", loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/entropy_loss", entropy_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/Reward", targetRewardMean, target_steps[thisT])
writer.add_scalar(f"Target{targetName}/WinRatio", WinRounds[targetName]/TotalRounds[targetName], target_steps[thisT])
print(f"episode over Target{targetName} mean reward:", targetRewardMean)
TotalRewardMean = np.mean(meanRewardList)
writer.add_scalar("GlobalCharts/TotalRewardMean", TotalRewardMean, total_steps)
writer.add_scalar("GlobalCharts/learning_rate", optimizer.param_groups[0]["lr"], total_steps)
# New Record!
if TotalRewardMean > bestReward and args.save_model:
bestReward = targetRewardMean
saveDir = "../PPO-Model/" + run_name +"_"+ str(TotalRewardMean) + ".pt"
torch.save(agent, saveDir)
saveDir = "../PPO-Model/"+ run_name + "_last.pt"
torch.save(agent, saveDir)
env.close()
writer.close()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,679 @@
import os
import argparse
import wandb
import time
import numpy as np
import random
import uuid
import torch
import torch.nn as nn
import torch.optim as optim
from AimbotEnv import Aimbot
from tqdm import tqdm
from enum import Enum
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from distutils.util import strtobool
from torch.utils.tensorboard import SummaryWriter
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.side_channel import (
SideChannel,
IncomingMessage,
OutgoingMessage,
)
from typing import List
from GAILMem import GAILMem
bestReward = 0
useCUDA = True
DEFAULT_SEED = 9331
ENV_PATH = "../Build/Build-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel-EndReward-Easy/Aimbot-ParallelEnv"
EXPERT_PATH = "NAN"
SIDE_CHANNEL_UUID = uuid.UUID("8bbfb62a-99b4-457c-879d-b78b69066b5e")
WAND_ENTITY = "koha9"
WORKER_ID = 2
BASE_PORT = 1001
# max round steps per agent is 2500/Decision_period, 25 seconds
# !!!check every parameters before run!!!
TOTAL_STEPS = 6750000
BATCH_SIZE = 512
MAX_TRAINNING_DATASETS = 3000
DECISION_PERIOD = 1
LEARNING_RATE = 1e-3
GAMMA = 0.99
GAE_LAMBDA = 0.95
EPOCHS = 4
CLIP_COEF = 0.1
POLICY_COEF = 1.0
ENTROPY_COEF = 0.01
CRITIC_COEF = 0.5
TARGET_LEARNING_RATE = 1e-5
DSCM_ENHANCED = 1
ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = True
TRAIN = True
WANDB_TACK = True
LOAD_DIR = None
# LOAD_DIR = "../PPO-Model/Aimbot-target-last.pt"
# public data
class Targets(Enum):
Free = 0
Go = 1
Attack = 2
Defence = 3
Num = 4
BASE_WINREWARD = 999
BASE_LOSEREWARD = -999
TARGETNUM = 4
ENV_TIMELIMIT = 30
RESULT_BROADCAST_RATIO = 2 / ENV_TIMELIMIT
TotalRounds = {"Free": 0, "Go": 0, "Attack": 0}
WinRounds = {"Free": 0, "Go": 0, "Attack": 0}
EPS = 1e-8
# !!!SPECIAL PARAMETERS!!!
# change it while program is finished
using_targets_num = 3
def parse_args():
# fmt: off
# pytorch and environment parameters
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
help="seed of the experiment")
parser.add_argument("--path", type=str, default=ENV_PATH,
help="enviroment path")
parser.add_argument("--workerID", type=int, default=WORKER_ID,
help="unity worker ID")
parser.add_argument("--baseport", type=int, default=BASE_PORT,
help="port to connect to Unity environment")
parser.add_argument("--lr", type=float, default=LEARNING_RATE,
help="the learning rate of optimizer")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
help="total timesteps of the experiments")
# model parameters
parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True,
help="Train Model or not")
parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS,
help="training dataset size,start training while dataset collect enough data")
parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE,
help="nimi batch size")
parser.add_argument("--epochs", type=int, default=EPOCHS,
help="the K epochs to update the policy")
parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
help="track on the wandb")
parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
help="the entity (team) of wandb's project")
parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
help="load model directory")
parser.add_argument("--decision-period", type=int, default=DECISION_PERIOD,
help="the number of steps to run in each environment per policy rollout")
# GAE loss
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=NORM_ADV, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--gamma", type=float, default=GAMMA,
help="the discount factor gamma")
parser.add_argument("--gaeLambda", type=float, default=GAE_LAMBDA,
help="the lambda for the general advantage estimation")
parser.add_argument("--clip-coef", type=float, default=CLIP_COEF,
help="the surrogate clipping coefficient")
parser.add_argument("--policy-coef", type=float, default=POLICY_COEF,
help="coefficient of the policy")
parser.add_argument("--ent-coef", type=float, default=ENTROPY_COEF,
help="coefficient of the entropy")
parser.add_argument("--critic-coef", type=float, default=CRITIC_COEF,
help="coefficient of the value function")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=CLIP_VLOSS, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
# fmt: on
args = parser.parse_args()
return args
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class PPOAgent(nn.Module):
def __init__(self, env: Aimbot, targetNum: int):
super(PPOAgent, self).__init__()
self.targetNum = targetNum
self.discrete_size = env.unity_discrete_size
self.discrete_shape = list(env.unity_discrete_branches)
self.continuous_size = env.unity_continuous_size
self.network = nn.ModuleList(
[
nn.Sequential(
layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 300)),
nn.ReLU(),
layer_init(nn.Linear(300, 200)),
nn.ReLU(),
)
for i in range(targetNum)
]
)
self.actor_dis = nn.ModuleList(
[layer_init(nn.Linear(200, self.discrete_size), std=0.01) for i in range(targetNum)]
)
self.actor_mean = nn.ModuleList(
[layer_init(nn.Linear(200, self.continuous_size), std=0.01) for i in range(targetNum)]
)
self.actor_logstd = nn.ParameterList(
[nn.Parameter(torch.zeros(1, self.continuous_size)) for i in range(targetNum)]
)
self.critic = nn.ModuleList(
[layer_init(nn.Linear(200, 1), std=1) for i in range(targetNum)]
)
def get_value(self, state: torch.Tensor):
targets = state[:, 0].to(torch.int32)
hidden = torch.stack([self.network[targets[i]](state[i]) for i in range(targets.size()[0])])
return torch.stack([self.critic[targets[i]](hidden[i]) for i in range(targets.size()[0])])
def get_actions_value(self, state: torch.Tensor, actions=None):
targets = state[:, 0].to(torch.int32)
hidden = torch.stack([self.network[targets[i]](state[i]) for i in range(targets.size()[0])])
# discrete
# 递归targets的数量,既agent数来实现根据target不同来选用对应的输出网络计算输出
dis_logits = torch.stack(
[self.actor_dis[targets[i]](hidden[i]) for i in range(targets.size()[0])]
)
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
# continuous
actions_mean = torch.stack(
[self.actor_mean[targets[i]](hidden[i]) for i in range(targets.size()[0])]
) # self.actor_mean(hidden)
# action_logstd = torch.stack([self.actor_logstd[targets[i]].expand_as(actions_mean) for i in range(targets.size()[0])]) # self.actor_logstd.expand_as(actions_mean)
# print(action_logstd)
action_std = torch.squeeze(
torch.stack(
[torch.exp(self.actor_logstd[targets[i]]) for i in range(targets.size()[0])]
),
dim=-1,
) # torch.exp(action_logstd)
con_probs = Normal(actions_mean, action_std)
# critic
criticV = torch.stack(
[self.critic[targets[i]](hidden[i]) for i in range(targets.size()[0])]
)
if actions is None:
if TRAIN:
# select actions base on probability distribution model
disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
conAct = con_probs.sample()
actions = torch.cat([disAct.T, conAct], dim=1)
else:
# select actions base on best probability distribution
disAct = torch.stack([torch.argmax(logit, dim=1) for logit in split_logits])
conAct = actions_mean
actions = torch.cat([disAct.T, conAct], dim=1)
else:
disAct = actions[:, 0 : env.unity_discrete_type].T
conAct = actions[:, env.unity_discrete_type :]
dis_log_prob = torch.stack(
[ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]
)
dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
return (
actions,
dis_log_prob.sum(0),
dis_entropy.sum(0),
con_probs.log_prob(conAct).sum(1),
con_probs.entropy().sum(1),
criticV,
)
def GAE(agent, args, rewards, dones, values, next_obs, next_done):
# GAE
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
data_size = rewards.size()[0]
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(data_size)):
if t == data_size - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = (
delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam
)
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(data_size)):
if t == data_size - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
return advantages, returns
class AimbotSideChannel(SideChannel):
def __init__(self, channel_id: uuid.UUID) -> None:
super().__init__(channel_id)
def on_message_received(self, msg: IncomingMessage) -> None:
"""
Note: We must implement this method of the SideChannel interface to
receive messages from Unity
"""
thisMessage = msg.read_string()
# print(thisMessage)
thisResult = thisMessage.split("|")
if thisResult[0] == "result":
TotalRounds[thisResult[1]] += 1
if thisResult[2] == "Win":
WinRounds[thisResult[1]] += 1
# print(TotalRounds)
# print(WinRounds)
elif thisResult[0] == "Error":
print(thisMessage)
# 发送函数
def send_string(self, data: str) -> None:
# send a string toC#
msg = OutgoingMessage()
msg.write_string(data)
super().queue_message_to_send(msg)
def send_bool(self, data: bool) -> None:
msg = OutgoingMessage()
msg.write_bool(data)
super().queue_message_to_send(msg)
def send_int(self, data: int) -> None:
msg = OutgoingMessage()
msg.write_int32(data)
super().queue_message_to_send(msg)
def send_float(self, data: float) -> None:
msg = OutgoingMessage()
msg.write_float32(data)
super().queue_message_to_send(msg)
def send_float_list(self, data: List[float]) -> None:
msg = OutgoingMessage()
msg.write_float32_list(data)
super().queue_message_to_send(msg)
def broadCastEndReward(rewardBF: list, remainTime: float):
thisRewardBF = rewardBF
if rewardBF[-1] <= -500:
# print("Lose DO NOT BROAD CAST",rewardBF[-1])
thisRewardBF[-1] = rewardBF[-1] - BASE_LOSEREWARD
thisRewardBF = (np.asarray(thisRewardBF)).tolist()
elif rewardBF[-1] >= 500:
# print("Win! Broadcast reward!",rewardBF[-1])
thisRewardBF[-1] = rewardBF[-1] - BASE_WINREWARD
thisRewardBF = (np.asarray(thisRewardBF) + (remainTime * RESULT_BROADCAST_RATIO)).tolist()
else:
print("!!!!!DIDNT GET RESULT REWARD!!!!!!", rewardBF[-1])
return torch.Tensor(thisRewardBF).to(device)
class Discriminator(nn.Module):
def __init__(self, env: Aimbot, targetNum: int):
super(Discriminator, self).__init__()
self.targetNum = targetNum
self.trajectory_size = env.unity_observation_shape + env.unity_action_size
self.network = nn.ModuleList(
[
nn.Sequential(
layer_init(nn.Linear(np.array(self.trajectory_size).prod(), 300)),
nn.ReLU(),
layer_init(nn.Linear(300, 200)),
nn.ReLU(),
)
for i in range(targetNum)
]
)
self.output = nn.ModuleList(
[nn.Relu(layer_init(nn.Linear(200, 1), std=0.01)) for i in range(targetNum)]
)
def get_value(self, state: torch.Tensor):
targets = state[:, 0].to(torch.int32)
hidden = torch.stack([self.network[targets[i]](state[i]) for i in range(targets.size()[0])])
return torch.stack([self.output[targets[i]](hidden[i]) for i in range(targets.size()[0])])
if __name__ == "__main__":
args = parse_args()
random.seed(DEFAULT_SEED)
np.random.seed(DEFAULT_SEED)
torch.manual_seed(DEFAULT_SEED)
device = torch.device("cuda" if torch.cuda.is_available() and useCUDA else "cpu")
aimBotsideChannel = AimbotSideChannel(SIDE_CHANNEL_UUID)
env = Aimbot(
envPath=ENV_PATH, workerID=WORKER_ID, basePort=BASE_PORT, side_channels=[aimBotsideChannel]
)
if LOAD_DIR is None:
agent = PPOAgent(env, TARGETNUM).to(device)
discriminator = Discriminator(env, TARGETNUM).to(device)
else:
print("NOT AVALABLE")
agent = torch.load(LOAD_DIR)
print("Load Agent", LOAD_DIR)
print(agent.eval())
# Optimizers
PPOoptimizer = optim.Adam(agent.parameters(), lr=LEARNING_RATE, eps=1e-5)
DSCMoptimizer = optim.Adam(discriminator.parameters(), lr=LEARNING_RATE, eps=1e-5)
# Tensorboard and WandB Recorder
game_name = "Aimbot_GAIL"
game_type = "ORG"
run_name = f"{game_name}_{game_type}_{DEFAULT_SEED}_{int(time.time())}"
if WANDB_TACK:
wandb.init(
project=game_name,
entity=WAND_ENTITY,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s"
% ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
agentMem = GAILMem()
expertMem = GAILMem()
expertMem.loadMemFile(EXPERT_PATH)
# start the game
total_update_step = using_targets_num * args.total_timesteps // args.datasetSize
target_steps = [0 for i in range(TARGETNUM)]
start_time = time.time()
state, _, done = env.reset()
# Trajectory Buffer
ob_bf = [[] for i in range(env.unity_agent_num)]
act_bf = [[] for i in range(env.unity_agent_num)]
dis_logprobs_bf = [[] for i in range(env.unity_agent_num)]
con_logprobs_bf = [[] for i in range(env.unity_agent_num)]
rewards_bf = [[] for i in range(env.unity_agent_num)]
dones_bf = [[] for i in range(env.unity_agent_num)]
values_bf = [[] for i in range(env.unity_agent_num)]
# initialize empty training datasets
obs = [
torch.tensor([]).to(device) for i in range(TARGETNUM)
] # (TARGETNUM,n,env.unity_observation_size)
actions = [
torch.tensor([]).to(device) for i in range(TARGETNUM)
] # (TARGETNUM,n,env.unity_action_size)
dis_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
con_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
rewards = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
values = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
dones = [torch.tensor([]).to(device) for i in range(TARGETNUM)]
next_state_buffer = [[] for i in range(TARGETNUM)]
next_done_buffer = [[] for i in range(TARGETNUM)]
for total_steps in range(total_update_step):
print("new episode")
trainQueue = []
while True:
with torch.no_grad():
# predict actions
action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value(
torch.Tensor(state).to(device)
)
value = value.flatten()
# variable from GPU to CPU
action_cpu = action.cpu().numpy()
dis_logprob_cpu = dis_logprob.cpu().numpy()
con_logprob_cpu = con_logprob.cpu().numpy()
value_cpu = value.cpu().numpy()
# Environment step
next_state, reward, next_done = env.step(action_cpu)
# save mem
for i in range(env.unity_agent_num):
# save memories to buffers
ob_bf[i].append(state[i])
act_bf[i].append(action_cpu[i])
dis_logprobs_bf[i].append(dis_logprob_cpu[i])
con_logprobs_bf[i].append(con_logprob_cpu[i])
rewards_bf[i].append(reward[i])
dones_bf[i].append(done[i])
values_bf[i].append(value_cpu[i])
if next_done[i] == True:
# finished a round, send finished memories to training datasets
thisTarget = int(state[i, 0])
next_state_buffer[thisTarget] = next_state
next_done_buffer[thisTarget] = next_done
obs[thisTarget] = torch.cat(
(obs[thisTarget], torch.tensor(ob_bf[i]).to(device)), 0
)
actions[thisTarget] = torch.cat(
(actions[thisTarget], torch.tensor(act_bf[i]).to(device)), 0
)
dis_logprobs[thisTarget] = torch.cat(
(dis_logprobs[thisTarget], torch.tensor(dis_logprobs_bf[i]).to(device)), 0
)
con_logprobs[thisTarget] = torch.cat(
(con_logprobs[thisTarget], torch.tensor(con_logprobs_bf[i]).to(device)), 0
)
values[thisTarget] = torch.cat(
(values[thisTarget], torch.tensor(values_bf[i]).to(device)), 0
)
dones[thisTarget] = torch.cat(
(dones[thisTarget], torch.tensor(dones_bf[i]).to(device)), 0
)
for i in range(TARGETNUM):
if obs[i].size()[0] >= args.datasetSize:
# start train NN
trainQueue.append(i)
if len(trainQueue) > 0:
break
state, done = next_state, next_done
if args.train:
meanRewardList = []
for thisT in trainQueue:
target_steps[thisT] += 1
# get agent training datasets
b_obs = obs[thisT].reshape((-1,) + env.unity_observation_shape)
b_actions = actions[thisT].reshape((-1,) + (env.unity_action_size,))
b_dis_logprobs = dis_logprobs[thisT].reshape(-1)
b_con_logprobs = con_logprobs[thisT].reshape(-1)
b_values = values[thisT].reshape(-1)
b_dones = dones[thisT].reshape(-1)
dataNum = b_obs[thisT].size()[0]
# get expert training datasets from GAILMem
exp_obs, _, exp_actions, _, _ = expertMem.getRandomSample(dataNum, thisT)
# trajectory
agent_trajectory = torch.cat((b_obs, b_actions), dim=1)
exp_trajectory = torch.cat((exp_obs, exp_actions), dim=1)
# discriminator ACC
with torch.no_grad():
thisDSCM_agent_acc = torch.mean(discriminator.get_value(agent_trajectory))
thisDSCM_expt_acc = torch.mean(discriminator.get_value(exp_trajectory))
# train discriminator
b_inds = np.arange(dataNum)
for epoch in range(args.epoch):
np.random.shuffle(b_inds)
# train discriminator
for start in range(0, dataNum, args.minibatchSize):
end = start + args.minibatchSize
mb_inds = b_inds[start:end]
exp_value = discriminator.get_value(exp_trajectory[mb_inds])
agent_value = discriminator.get_value(agent_trajectory[mb_inds])
# DSCM loss function
exp_loss = torch.log(1.0 - exp_value + EPS)
agent_loss = torch.log(agent_value + EPS)
loss = exp_loss + agent_loss
# DSCM backward
DSCMoptimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), args.max_grad_norm)
DSCMoptimizer.step()
# get discriminator reward
with torch.no_grad():
DSCMReward = discriminator.get_value(agent_trajectory) * DSCM_ENHANCED
advantages, rts = GAE(
agent,
args,
DSCMReward,
b_dones,
b_values,
next_state_buffer[thisTarget],
next_done_buffer[thisTarget],
)
b_advantages = advantages.reshape(-1)
b_returns = rts.reshape(-1)
# train PPO agent
for epoch in range(args.epoch):
np.random.shuffle(b_inds)
for start in range(0, dataNum, args.minibatchSize):
end = start + args.minibatchSize
mb_inds = b_inds[start:end]
mb_advantages = b_advantages[mb_inds]
# normalize advantages
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (
mb_advantages.std() + 1e-8
)
(
_,
new_dis_logprob,
dis_entropy,
new_con_logprob,
con_entropy,
newvalue,
) = agent.get_actions_value(b_obs[mb_inds], b_actions[mb_inds])
# discrete ratio
dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
dis_ratio = dis_logratio.exp()
# continuous ratio
con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
con_ratio = con_logratio.exp()
# discrete Policy loss
dis_pg_loss_orig = -mb_advantages * dis_ratio
dis_pg_loss_clip = -mb_advantages * torch.clamp(
dis_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
# continuous Policy loss
con_pg_loss_orig = -mb_advantages * con_ratio
con_pg_loss_clip = -mb_advantages * torch.clamp(
con_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
# total loss
entropy_loss = dis_entropy.mean() + con_entropy.mean()
loss = (
dis_pg_loss * args.policy_coef
+ con_pg_loss * args.policy_coef
- entropy_loss * args.ent_coef
+ v_loss * args.critic_coef
)
PPOoptimizer.zero_grad()
loss.backward()
# Clips gradient norm of an iterable of parameters.
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
PPOoptimizer.step()
# record mean reward before clear history
targetRewardMean = np.mean(rewards[thisT].to("cpu").detach().numpy().copy())
meanRewardList.append(targetRewardMean)
targetName = Targets(thisT).name
# clear this target trainning set buffer
obs[thisT] = torch.tensor([]).to(device)
actions[thisT] = torch.tensor([]).to(device)
dis_logprobs[thisT] = torch.tensor([]).to(device)
con_logprobs[thisT] = torch.tensor([]).to(device)
rewards[thisT] = torch.tensor([]).to(device)
values[thisT] = torch.tensor([]).to(device)
dones[thisT] = torch.tensor([]).to(device)
# record rewards for plotting purposes
writer.add_scalar(f"Target{targetName}/value_loss", v_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/dis_policy_loss", dis_pg_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/con_policy_loss", con_pg_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/total_loss", loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/entropy_loss", entropy_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/Reward", targetRewardMean, target_steps[thisT])
writer.add_scalar(f"Target{targetName}/WinRatio", WinRounds[targetName]/TotalRounds[targetName], target_steps[thisT])
writer.add_scalar(f"Target{targetName}/Discriminator_EXP_ACC", thisDSCM_expt_acc,target_steps[thisT])
writer.add_scalar(f"Target{targetName}/Discriminator_Agent_ACC", thisDSCM_agent_acc,target_steps[thisT])
print(f"episode over Target{targetName} mean reward:", targetRewardMean)
TotalRewardMean = np.mean(meanRewardList)
writer.add_scalar("GlobalCharts/TotalRewardMean", TotalRewardMean, total_steps)
writer.add_scalar("GlobalCharts/learning_rate", PPOoptimizer.param_groups[0]["lr"], total_steps)
# New Record!
if TotalRewardMean > bestReward:
bestReward = targetRewardMean
saveDir = "../PPO-Model/Hybrid-MNN-500-300" + str(TotalRewardMean) + ".pt"
torch.save(agent, saveDir)
# train PPO
# record

View File

@ -0,0 +1,176 @@
import os
import random
import numpy as np
class GAILMem():
def __init__(self, targetNum):
self.targetNum = targetNum
self.states = [[] for i in range(self.targetNum)]
self.actorProbs = [[] for i in range(self.targetNum)]
self.actions = [[] for i in range(self.targetNum)]
self.rewards = [[] for i in range(self.targetNum)]
self.dones = [[] for i in range(self.targetNum)]
self.memNum = [0 for i in range(self.targetNum)]
def clearMem(self,targetType):
"""clearMemories"""
self.states[targetType] = []
self.actorProbs[targetType] = []
self.actions[targetType] = []
self.rewards[targetType] = []
self.dones[targetType] = []
self.memNum[targetType] = 0
def saveMemtoFile(self, dir: str):
"""save memories ndarray to npz file
Args:
dir (str): save direction,like"GAIL-Expert-Data/",end with "/"
"""
for i in range(self.targetNum):
statesNP = np.asarray(self.states[i])
actorProbsNP = np.asarray(self.actorProbs[i])
actionsNP = np.asarray(self.actions[i])
rewardsNP = np.asarray(self.rewards[i])
donesNP = np.asarray(self.dones[i])
thisSaveDir = dir + "pack-" + str(self.memNum) + str(i)
try:
np.savez(
thisSaveDir,
states=statesNP,
actorProbs=actorProbsNP,
actions=actionsNP,
rewards=rewardsNP,
dones=donesNP,
)
except FileNotFoundError:
os.mkdir(dir)
np.savez(
thisSaveDir,
states=statesNP,
actorProbs=actorProbsNP,
actions=actionsNP,
rewards=rewardsNP,
dones=donesNP,
)
def loadMemFile(self, dir: str):
"""load memories from mpz file
Args:
dir (str): file direction
"""
for i in range(self.targetNum):
self.clearMem(i)
loadDir = dir + "pack-" + str(self.memNum) + str(i) + ".npz"
memFile = np.load(loadDir, allow_pickle=True)
self.states[i] = memFile["states"].tolist()
self.actorProbs[i] = memFile["actorProbs"].tolist()
self.actions[i] = memFile["actions"].tolist()
self.rewards[i] = memFile["rewards"].tolist()
self.dones[i] = memFile["dones"].tolist()
self.memNum = len(self.states[i])
def getRandomSample(self,sampleNum: int,targetType:int):
"""get random unique sample set.
Args:
sampleNum (int, optional): sample number, while 0 return all samples. Defaults to 0.
Returns:
tuple: (states,actorProbs,actions,rewards,dones)
"""
if sampleNum == 0:
return (
self.getStates(),
self.getActorProbs(),
self.getActions(),
self.getRewards(),
self.getDones(),
)
else:
randIndex = random.sample(range(0, self.memNum), sampleNum)
return (
self.standDims(np.asarray(self.states)[randIndex]),
self.standDims(np.asarray(self.actorProbs)[randIndex]),
self.standDims(np.asarray(self.actions)[randIndex]),
self.standDims(np.asarray(self.rewards)[randIndex]),
self.standDims(np.asarray(self.dones)[randIndex]),
)
def getStates(self,targetType):
"""get all States data as ndarray
Returns:
ndarray: ndarray type State data
"""
return self.standDims(np.asarray(self.states[targetType]))
def getActorProbs(self,targetType):
"""get all ActorProbs data as ndarray
Returns:
ndarray: ndarray type ActorProbs data
"""
return self.standDims(np.asarray(self.actorProbs[targetType]))
def getActions(self,targetType):
"""get all Actions data as ndarray
Returns:
ndarray: ndarray type Actions data
"""
return self.standDims(np.asarray(self.actions[targetType]))
def getRewards(self,targetType):
"""get all Rewards data as ndarray
Returns:
ndarray: ndarray type Rewards data
"""
return self.standDims(np.asarray(self.rewards[targetType]))
def getDones(self,targetType):
"""get all Dones data as ndarray
Returns:
ndarray: ndarray type Dones data
"""
return self.standDims(np.asarray(self.dones[targetType]))
def standDims(self, data):
"""standalize data's dimension
Args:
data (list): data list
Returns:
ndarray: ndarra type data
"""
# standarlize data's dimension
if np.ndim(data) > 2:
return np.squeeze(data, axis=1)
elif np.ndim(data) < 2:
return np.expand_dims(data, axis=1)
else:
return np.asarray(data)
def saveMems(self, state, actorProb, action, reward, done):
"""save memories
Args:
state (_type_): sates
actorProb (_type_): actor predict result
action (_type_): actor choosed action
reward (_type_): reward
done (function): done
"""
targetType = int(state[0,0])
self.states[targetType].append(state)
self.actorProbs[targetType].append(actorProb)
self.actions[targetType].append(action)
self.rewards[targetType].append(reward)
self.dones[targetType].append(done)
self.memNum[targetType] += 1

View File

@ -0,0 +1,97 @@
import time
import numpy as np
from AimbotEnv import Aimbot
from GAILMem import GAILMem
import keyboard
import mouse
import math
# Env
ENV_PATH = "../Build/HUMAN-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel-EndReward-Easy/Aimbot-ParallelEnv"
WORKER_ID = 1
BASE_PORT = 200
# ENV Para
MOUSEDISCOUNT = 20.0
MAX_EP = 10000000
STACKSTATESIZE = 3
STACKINTERCE = 29
class HumanActions:
def __init__(self, mouseDiscount: float = 10, screenW: int = 1920, screenH: int = 1080):
def multiPressed():
pass
keyboard.add_hotkey("w+a", multiPressed)
keyboard.add_hotkey("w+d", multiPressed)
keyboard.add_hotkey("s+a", multiPressed)
keyboard.add_hotkey("s+d", multiPressed)
self.screenW = screenW
self.screenH = screenH
self.MOUSEDISCOUNT = mouseDiscount
self.mouseSmooth = 5
self.mouseMax = 10
def getHumanActions(self):
x, _ = mouse.get_position()
xMovement = (x - self.screenW / 2) / self.MOUSEDISCOUNT
xMovement = self.smoothMouseMovement(xMovement)
ws = 0
ad = 0
click = 0
if keyboard.is_pressed("w"):
ws = 1
elif keyboard.is_pressed("s"):
ws = 2
if keyboard.is_pressed("d"):
ad = 1
elif keyboard.is_pressed("a"):
ad = 2
if keyboard.is_pressed("w+d"):
ws = 1
ad = 1
elif keyboard.is_pressed("w+a"):
ws = 1
ad = 2
elif keyboard.is_pressed("s+d"):
ws = 2
ad = 1
elif keyboard.is_pressed("s+a"):
ws = 2
ad = 2
if keyboard.is_pressed("0"):
click = 1
actions = np.asarray([[ws, ad, click, xMovement]])
mouse.move(self.screenW / 2, self.screenH / 2)
return actions
def smoothMouseMovement(self, x: float):
out = (1 / (1 + math.exp(-x / self.mouseSmooth)) - 1 / 2) * self.mouseMax * 2
return out
if __name__ == "__main__":
env = Aimbot(
envPath=ENV_PATH,
workerID=WORKER_ID,
basePort=BASE_PORT,
side_channels=[],
)
demoMem = GAILMem(4)
demoAct = HumanActions(mouseDiscount=MOUSEDISCOUNT)
for ep in range(MAX_EP):
print("EP Start")
done = False
while not done:
actions = demoAct.getHumanActions()
nextState, r, done = env.step(actions=actions)
demoMem.saveMems(state=nextState, actorProb=None, action=actions, reward=None, done=None)
state = nextState
#nowMemNum = demoMem.memNum
saveSteps = 500
lastMemCheckPoint = 0

View File

@ -1,26 +1,319 @@
import argparse
import wandb
import time
import numpy as np
import random
import uuid
import torch
import atexit
import os
from aimbotEnv import Aimbot
from aimbotEnv import AimbotSideChannel
from ppoagent import PPOAgent
from airecorder import WandbRecorder
from aimemory import PPOMem
from aimemory import Targets
from arguments import parse_args
from arguments import set_save_model, is_save_model
import torch.nn as nn
import torch.optim as optim
# side channel uuid
from AimbotEnv import Aimbot
from tqdm import tqdm
from enum import Enum
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from distutils.util import strtobool
from torch.utils.tensorboard import SummaryWriter
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.side_channel import (
SideChannel,
IncomingMessage,
OutgoingMessage,
)
from typing import List
bestReward = 0
DEFAULT_SEED = 933139
ENV_PATH = "../Build/Build-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel-EndReward-Easy/Aimbot-ParallelEnv"
SIDE_CHANNEL_UUID = uuid.UUID("8bbfb62a-99b4-457c-879d-b78b69066b5e")
# tensorboard names
GAME_NAME = "Aimbot_Hybrid_Full_MNN_MultiLevel"
GAME_TYPE = "GotoOnly-3.6-Level0123-newModel-Onehot"
WAND_ENTITY = "koha9"
WORKER_ID = 2
BASE_PORT = 1001
# max round steps per agent is 2500/Decision_period, 25 seconds
# !!!check every parameters before run!!!
TOTAL_STEPS = 6750000
BATCH_SIZE = 512
MAX_TRAINNING_DATASETS = 3000
DECISION_PERIOD = 1
LEARNING_RATE = 1e-3
GAMMA = 0.99
GAE_LAMBDA = 0.95
EPOCHS = 4
CLIP_COEF = 0.1
POLICY_COEF = 1.0
ENTROPY_COEF = 0.01
CRITIC_COEF = 0.5
TARGET_LEARNING_RATE = 1e-5
ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = True
TRAIN = True
WANDB_TACK = True
LOAD_DIR = None
#LOAD_DIR = "../PPO-Model/Aimbot-target-last.pt"
# public data
class Targets(Enum):
Free = 0
Go = 1
Attack = 2
Defence = 3
Num = 4
BASE_WINREWARD = 999
BASE_LOSEREWARD = -999
TARGETNUM= 4
ENV_TIMELIMIT = 30
RESULT_BROADCAST_RATIO = 2/ENV_TIMELIMIT
TotalRounds = {"Free":0,"Go":0,"Attack":0}
WinRounds = {"Free":0,"Go":0,"Attack":0}
# !!!SPECIAL PARAMETERS!!!
# change it while program is finished
using_targets_num = 3
def parse_args():
# fmt: off
# pytorch and environment parameters
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
help="seed of the experiment")
parser.add_argument("--path", type=str, default=ENV_PATH,
help="enviroment path")
parser.add_argument("--workerID", type=int, default=WORKER_ID,
help="unity worker ID")
parser.add_argument("--baseport", type=int, default=BASE_PORT,
help="port to connect to Unity environment")
parser.add_argument("--lr", type=float, default=LEARNING_RATE,
help="the learning rate of optimizer")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
help="total timesteps of the experiments")
# model parameters
parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True,
help="Train Model or not")
parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS,
help="training dataset size,start training while dataset collect enough data")
parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE,
help="nimi batch size")
parser.add_argument("--epochs", type=int, default=EPOCHS,
help="the K epochs to update the policy")
parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
help="track on the wandb")
parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
help="the entity (team) of wandb's project")
parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
help="load model directory")
parser.add_argument("--decision-period", type=int, default=DECISION_PERIOD,
help="the number of steps to run in each environment per policy rollout")
# GAE loss
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=NORM_ADV, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--gamma", type=float, default=GAMMA,
help="the discount factor gamma")
parser.add_argument("--gaeLambda", type=float, default=GAE_LAMBDA,
help="the lambda for the general advantage estimation")
parser.add_argument("--clip-coef", type=float, default=CLIP_COEF,
help="the surrogate clipping coefficient")
parser.add_argument("--policy-coef", type=float, default=POLICY_COEF,
help="coefficient of the policy")
parser.add_argument("--ent-coef", type=float, default=ENTROPY_COEF,
help="coefficient of the entropy")
parser.add_argument("--critic-coef", type=float, default=CRITIC_COEF,
help="coefficient of the value function")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=CLIP_VLOSS, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
# fmt: on
args = parser.parse_args()
return args
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class PPOAgent(nn.Module):
def __init__(self, env: Aimbot,targetNum:int):
super(PPOAgent, self).__init__()
self.targetNum = targetNum
self.discrete_size = env.unity_discrete_size
self.discrete_shape = list(env.unity_discrete_branches)
self.continuous_size = env.unity_continuous_size
self.network = nn.ModuleList([nn.Sequential(
layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 300)),
nn.ReLU(),
layer_init(nn.Linear(300, 200)),
nn.ReLU()) for i in range(targetNum)])
self.actor_dis = nn.ModuleList([layer_init(nn.Linear(200, self.discrete_size), std=0.01) for i in range(targetNum)])
self.actor_mean = nn.ModuleList([layer_init(nn.Linear(200, self.continuous_size), std=0.01) for i in range(targetNum)])
self.actor_logstd = nn.ParameterList([nn.Parameter(torch.zeros(1, self.continuous_size)) for i in range(targetNum)])
self.critic = nn.ModuleList([layer_init(nn.Linear(200, 1), std=1)for i in range(targetNum)])
def get_value(self, state: torch.Tensor):
targets = state[:,0].to(torch.int32)
hidden = torch.stack([self.network[targets[i]](state[i]) for i in range(targets.size()[0])])
return torch.stack([self.critic[targets[i]](hidden[i])for i in range(targets.size()[0])])
def get_actions_value(self, state: torch.Tensor, actions=None):
targets = state[:,0].to(torch.int32)
hidden = torch.stack([self.network[targets[i]](state[i]) for i in range(targets.size()[0])])
# discrete
# 递归targets的数量,既agent数来实现根据target不同来选用对应的输出网络计算输出
dis_logits = torch.stack([self.actor_dis[targets[i]](hidden[i]) for i in range(targets.size()[0])])
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
# continuous
actions_mean = torch.stack([self.actor_mean[targets[i]](hidden[i]) for i in range(targets.size()[0])]) # self.actor_mean(hidden)
# action_logstd = torch.stack([self.actor_logstd[targets[i]].expand_as(actions_mean) for i in range(targets.size()[0])]) # self.actor_logstd.expand_as(actions_mean)
# print(action_logstd)
action_std = torch.squeeze(torch.stack([torch.exp(self.actor_logstd[targets[i]]) for i in range(targets.size()[0])]),dim = -1) # torch.exp(action_logstd)
con_probs = Normal(actions_mean, action_std)
# critic
criticV = torch.stack([self.critic[targets[i]](hidden[i])for i in range(targets.size()[0])])
if actions is None:
if args.train:
# select actions base on probability distribution model
disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
conAct = con_probs.sample()
actions = torch.cat([disAct.T, conAct], dim=1)
else:
# select actions base on best probability distribution
disAct = torch.stack([torch.argmax(logit, dim=1) for logit in split_logits])
conAct = actions_mean
actions = torch.cat([disAct.T, conAct], dim=1)
else:
disAct = actions[:, 0 : env.unity_discrete_type].T
conAct = actions[:, env.unity_discrete_type :]
dis_log_prob = torch.stack(
[ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]
)
dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
return (
actions,
dis_log_prob.sum(0),
dis_entropy.sum(0),
con_probs.log_prob(conAct).sum(1),
con_probs.entropy().sum(1),
criticV,
)
def GAE(agent, args, rewards, dones, values, next_obs, next_done):
# GAE
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
data_size = rewards.size()[0]
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(data_size)):
if t == data_size - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = (
delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam
)
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(data_size)):
if t == data_size - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
return advantages, returns
class AimbotSideChannel(SideChannel):
def __init__(self, channel_id: uuid.UUID) -> None:
super().__init__(channel_id)
def on_message_received(self, msg: IncomingMessage) -> None:
"""
Note: We must implement this method of the SideChannel interface to
receive messages from Unity
"""
thisMessage = msg.read_string()
# print(thisMessage)
thisResult = thisMessage.split("|")
if(thisResult[0] == "result"):
TotalRounds[thisResult[1]]+=1
if(thisResult[2] == "Win"):
WinRounds[thisResult[1]]+=1
#print(TotalRounds)
#print(WinRounds)
elif(thisResult[0] == "Error"):
print(thisMessage)
# 发送函数
def send_string(self, data: str) -> None:
# send a string toC#
msg = OutgoingMessage()
msg.write_string(data)
super().queue_message_to_send(msg)
def send_bool(self, data: bool) -> None:
msg = OutgoingMessage()
msg.write_bool(data)
super().queue_message_to_send(msg)
def send_int(self, data: int) -> None:
msg = OutgoingMessage()
msg.write_int32(data)
super().queue_message_to_send(msg)
def send_float(self, data: float) -> None:
msg = OutgoingMessage()
msg.write_float32(data)
super().queue_message_to_send(msg)
def send_float_list(self, data: List[float]) -> None:
msg = OutgoingMessage()
msg.write_float32_list(data)
super().queue_message_to_send(msg)
def broadCastEndReward(rewardBF:list,remainTime:float):
thisRewardBF = rewardBF
if (rewardBF[-1]<=-500):
# print("Lose DO NOT BROAD CAST",rewardBF[-1])
thisRewardBF[-1] = rewardBF[-1]-BASE_LOSEREWARD
thisRewardBF = (np.asarray(thisRewardBF)).tolist()
elif (rewardBF[-1]>=500):
# print("Win! Broadcast reward!",rewardBF[-1])
thisRewardBF[-1] = rewardBF[-1]-BASE_WINREWARD
thisRewardBF = (np.asarray(thisRewardBF)+(remainTime*RESULT_BROADCAST_RATIO)).tolist()
else:
print("!!!!!DIDNT GET RESULT REWARD!!!!!!",rewardBF[-1])
return torch.Tensor(thisRewardBF).to(device)
if __name__ == "__main__":
args = parse_args()
@ -29,81 +322,91 @@ if __name__ == "__main__":
torch.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
best_reward = -1
# Initialize environment agent optimizer
aimbot_side_channel = AimbotSideChannel(SIDE_CHANNEL_UUID)
env = Aimbot(
env_path=args.path,
worker_id=args.workerID,
base_port=args.baseport,
side_channels=[aimbot_side_channel])
# Initialize environment anget optimizer
aimBotsideChannel = AimbotSideChannel(SIDE_CHANNEL_UUID);
env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport,side_channels=[aimBotsideChannel])
if args.load_dir is None:
agent = PPOAgent(
env=env,
this_args=args,
device=device,
).to(device)
agent = PPOAgent(env,TARGETNUM).to(device)
else:
agent = torch.load(args.load_dir)
# freeze
if args.freeze_viewnet:
# freeze the view network
print("FREEZE VIEW NETWORK is not compatible with Full MNN!")
raise NotImplementedError
print("Load Agent", args.load_dir)
print(agent.eval())
# optimizer
optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5)
# Tensorboard and WandB Recorder
run_name = f"{GAME_TYPE}_{args.seed}_{int(time.time())}"
wdb_recorder = WandbRecorder(GAME_NAME, GAME_TYPE, run_name, args)
game_name = "Aimbot_Target_Hybrid_Multi_Output"
game_type = "OffPolicy_EndBC"
run_name = f"{game_name}_{game_type}_{args.seed}_{int(time.time())}"
if args.wandb_track:
wandb.init(
project=game_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
# start the game
total_update_step = args.target_num * args.total_timesteps // args.datasetSize
target_steps = [0 for i in range(args.target_num)]
start_time = time.time()
state, _, done = env.reset()
# initialize AI memories
ppo_memories = PPOMem(
args=args,
unity_agent_num=env.unity_agent_num,
device=device,
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s"
% ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# MAIN LOOP: run agent in environment
for total_steps in range(total_update_step):
# discount learning rate, while step == total_update_step lr will be 0
if args.annealLR:
final_lr_ratio = args.target_lr / args.lr
frac = 1.0 - ((total_steps + 1.0) / total_update_step)
lr_now = frac * args.lr
optimizer.param_groups[0]["lr"] = lr_now
else:
lr_now = args.lr
# Trajectory Buffer
ob_bf = [[] for i in range(env.unity_agent_num)]
act_bf = [[] for i in range(env.unity_agent_num)]
dis_logprobs_bf = [[] for i in range(env.unity_agent_num)]
con_logprobs_bf = [[] for i in range(env.unity_agent_num)]
rewards_bf = [[] for i in range(env.unity_agent_num)]
dones_bf = [[] for i in range(env.unity_agent_num)]
values_bf = [[] for i in range(env.unity_agent_num)]
# start the game
total_update_step = using_targets_num * args.total_timesteps // args.datasetSize
target_steps = [0 for i in range(TARGETNUM)]
start_time = time.time()
state, _, done = env.reset()
# state = torch.Tensor(next_obs).to(device)
# next_done = torch.zeros(env.unity_agent_num).to(device)
# initialize empty training datasets
obs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,env.unity_observation_size)
actions = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,env.unity_action_size)
dis_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
con_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
rewards = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
values = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
advantages = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
returns = [torch.tensor([]).to(device) for i in range(TARGETNUM)] # (TARGETNUM,n,1)
for total_steps in range(total_update_step):
# discunt learning rate, while step == total_update_step lr will be 0
print("new episode")
if args.annealLR:
finalRatio = TARGET_LEARNING_RATE/args.lr
frac = 1.0 - finalRatio*((total_steps - 1.0) / total_update_step)
lrnow = frac * args.lr
optimizer.param_groups[0]["lr"] = lrnow
# episode start show learning rate
print("new episode", total_steps, "learning rate = ", lr_now)
step = 0
training = False
train_queue = []
last_reward = [0. for i in range(env.unity_agent_num)]
# MAIN LOOP: run agent in environment
i = 0
training = False
trainQueue = []
while True:
# Target Type(state[0][0]) is stay(4),use all zero action
if state[0][0] == 4:
next_state, reward, next_done = env.step(env.all_zero_action)
state, done = next_state, next_done
continue
# On decision point, and Target Type(state[0][0]) is not stay(4) choose action by agent
if step % args.decision_period == 0:
step += 1
if i % args.decision_period == 0:
step = round(i / args.decision_period)
# Choose action by agent
with torch.no_grad():
# predict actions
action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value(
torch.tensor(state,dtype=torch.float32).to(device)
torch.Tensor(state).to(device)
)
value = value.flatten()
@ -116,140 +419,250 @@ if __name__ == "__main__":
next_state, reward, next_done = env.step(action_cpu)
# save memories
if args.train:
ppo_memories.save_memories(
now_step=step,
agent=agent,
state=state,
action_cpu=action_cpu,
dis_logprob_cpu=dis_logprob_cpu,
con_logprob_cpu=con_logprob_cpu,
reward=reward,
done=done,
value_cpu=value_cpu,
last_reward=last_reward,
next_done=next_done,
next_state=next_state,
)
# check if any training dataset is full and ready to train
for i in range(args.target_num):
if ppo_memories.obs[i].size()[0] >= args.datasetSize:
# start train NN
train_queue.append(i)
if len(train_queue) > 0:
# break while loop and start train
break
# update state
for i in range(env.unity_agent_num):
# save memories to buffers
ob_bf[i].append(state[i])
act_bf[i].append(action_cpu[i])
dis_logprobs_bf[i].append(dis_logprob_cpu[i])
con_logprobs_bf[i].append(con_logprob_cpu[i])
rewards_bf[i].append(reward[i])
dones_bf[i].append(done[i])
values_bf[i].append(value_cpu[i])
if next_done[i] == True:
# finished a round, send finished memories to training datasets
# compute advantage and discounted reward
#print(i,"over")
roundTargetType = int(state[i,0])
thisRewardsTensor = broadCastEndReward(rewards_bf[i],roundTargetType)
adv, rt = GAE(
agent,
args,
thisRewardsTensor,
torch.Tensor(dones_bf[i]).to(device),
torch.tensor(values_bf[i]).to(device),
torch.tensor([next_state[i]]).to(device),
torch.Tensor([next_done[i]]).to(device),
)
# send memories to training datasets
obs[roundTargetType] = torch.cat((obs[roundTargetType], torch.tensor(ob_bf[i]).to(device)), 0)
actions[roundTargetType] = torch.cat((actions[roundTargetType], torch.tensor(act_bf[i]).to(device)), 0)
dis_logprobs[roundTargetType] = torch.cat(
(dis_logprobs[roundTargetType], torch.tensor(dis_logprobs_bf[i]).to(device)), 0
)
con_logprobs[roundTargetType] = torch.cat(
(con_logprobs[roundTargetType], torch.tensor(con_logprobs_bf[i]).to(device)), 0
)
rewards[roundTargetType] = torch.cat((rewards[roundTargetType], thisRewardsTensor), 0)
values[roundTargetType] = torch.cat((values[roundTargetType], torch.tensor(values_bf[i]).to(device)), 0)
advantages[roundTargetType] = torch.cat((advantages[roundTargetType], adv), 0)
returns[roundTargetType] = torch.cat((returns[roundTargetType], rt), 0)
# clear buffers
ob_bf[i] = []
act_bf[i] = []
dis_logprobs_bf[i] = []
con_logprobs_bf[i] = []
rewards_bf[i] = []
dones_bf[i] = []
values_bf[i] = []
print(f"train dataset {Targets(roundTargetType).name} added:{obs[roundTargetType].size()[0]}/{args.datasetSize}")
for i in range(TARGETNUM):
if obs[i].size()[0] >= args.datasetSize:
# start train NN
trainQueue.append(i)
if(len(trainQueue)>0):
break
state, done = next_state, next_done
else:
step += 1
# skip this step use last predict action
next_state, reward, next_done = env.step(action_cpu)
next_obs, reward, next_done = env.step(action_cpu)
# save memories
if args.train:
ppo_memories.save_memories(
now_step=step,
agent=agent,
state=state,
action_cpu=action_cpu,
dis_logprob_cpu=dis_logprob_cpu,
con_logprob_cpu=con_logprob_cpu,
reward=reward,
done=done,
value_cpu=value_cpu,
last_reward=last_reward,
next_done=next_done,
next_state=next_state,
)
# update state
state = next_state
last_reward = reward
for i in range(env.unity_agent_num):
if next_done[i] == True:
#print(i,"over???")
# save last memories to buffers
ob_bf[i].append(state[i])
act_bf[i].append(action_cpu[i])
dis_logprobs_bf[i].append(dis_logprob_cpu[i])
con_logprobs_bf[i].append(con_logprob_cpu[i])
rewards_bf[i].append(reward[i])
dones_bf[i].append(done[i])
values_bf[i].append(value_cpu[i])
# finished a round, send finished memories to training datasets
# compute advantage and discounted reward
adv, rt = GAE(
agent,
args,
torch.tensor(rewards_bf[i]).to(device),
torch.Tensor(dones_bf[i]).to(device),
torch.tensor(values_bf[i]).to(device),
torch.tensor(next_state[i]).to(device),
torch.Tensor([next_done[i]]).to(device),
)
# send memories to training datasets
obs = torch.cat((obs, torch.tensor(ob_bf[i]).to(device)), 0)
actions = torch.cat((actions, torch.tensor(act_bf[i]).to(device)), 0)
dis_logprobs = torch.cat(
(dis_logprobs, torch.tensor(dis_logprobs_bf[i]).to(device)), 0
)
con_logprobs = torch.cat(
(con_logprobs, torch.tensor(con_logprobs_bf[i]).to(device)), 0
)
rewards = torch.cat((rewards, torch.tensor(rewards_bf[i]).to(device)), 0)
values = torch.cat((values, torch.tensor(values_bf[i]).to(device)), 0)
advantages = torch.cat((advantages, adv), 0)
returns = torch.cat((returns, rt), 0)
# clear buffers
ob_bf[i] = []
act_bf[i] = []
dis_logprobs_bf[i] = []
con_logprobs_bf[i] = []
rewards_bf[i] = []
dones_bf[i] = []
values_bf[i] = []
print(f"train dataset added:{obs.size()[0]}/{args.datasetSize}")
state, done = next_state, next_done
i += 1
if args.train:
# train mode on
mean_reward_list = [] # for WANDB
# loop all training queue
for this_train_ind in train_queue:
# start time
start_time = time.time()
target_steps[this_train_ind] += 1
# train agent
(
v_loss,
dis_pg_loss,
con_pg_loss,
loss,
entropy_loss
) = agent.train_net(
this_train_ind=this_train_ind,
ppo_memories=ppo_memories,
optimizer=optimizer
)
meanRewardList = [] # for WANDB
# loop all tarining queue
for thisT in trainQueue:
target_steps[thisT]+=1
# flatten the batch
b_obs = obs[thisT].reshape((-1,) + env.unity_observation_shape)
b_dis_logprobs = dis_logprobs[thisT].reshape(-1)
b_con_logprobs = con_logprobs[thisT].reshape(-1)
b_actions = actions[thisT].reshape((-1,) + (env.unity_action_size,))
b_advantages = advantages[thisT].reshape(-1)
b_returns = returns[thisT].reshape(-1)
b_values = values[thisT].reshape(-1)
b_size = b_obs[thisT].size()[0]
# Optimizing the policy and value network
b_inds = np.arange(b_size)
# clipfracs = []
for epoch in range(args.epochs):
# shuffle all datasets
np.random.shuffle(b_inds)
for start in range(0, b_size, args.minibatchSize):
end = start + args.minibatchSize
mb_inds = b_inds[start:end]
mb_advantages = b_advantages[mb_inds]
# normalize advantages
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (
mb_advantages.std() + 1e-8
)
(
_,
new_dis_logprob,
dis_entropy,
new_con_logprob,
con_entropy,
newvalue,
) = agent.get_actions_value(b_obs[mb_inds], b_actions[mb_inds])
# discrete ratio
dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
dis_ratio = dis_logratio.exp()
# continuous ratio
con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
con_ratio = con_logratio.exp()
"""
# early stop
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
"""
# discrete Policy loss
dis_pg_loss_orig = -mb_advantages * dis_ratio
dis_pg_loss_clip = -mb_advantages * torch.clamp(
dis_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
# continuous Policy loss
con_pg_loss_orig = -mb_advantages * con_ratio
con_pg_loss_clip = -mb_advantages * torch.clamp(
con_ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
# total loss
entropy_loss = dis_entropy.mean() + con_entropy.mean()
loss = (
dis_pg_loss * args.policy_coef
+ con_pg_loss * args.policy_coef
- entropy_loss * args.ent_coef
+ v_loss * args.critic_coef
)
optimizer.zero_grad()
loss.backward()
# Clips gradient norm of an iterable of parameters.
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
"""
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
"""
# record mean reward before clear history
print("done")
target_reward_mean = np.mean(ppo_memories.rewards[this_train_ind].to("cpu").detach().numpy().copy())
mean_reward_list.append(target_reward_mean)
targetName = Targets(this_train_ind).name
targetRewardMean = np.mean(rewards[thisT].to("cpu").detach().numpy().copy())
meanRewardList.append(targetRewardMean)
targetName = Targets(thisT).name
# clear this target training set buffer
ppo_memories.clear_training_datasets(this_train_ind)
# record rewards for plotting purposes
wdb_recorder.add_target_scalar(
targetName,
this_train_ind,
v_loss,
dis_pg_loss,
con_pg_loss,
loss,
entropy_loss,
target_reward_mean,
target_steps,
)
print(f"episode over Target{targetName} mean reward:", target_reward_mean)
TotalRewardMean = np.mean(mean_reward_list)
wdb_recorder.add_global_scalar(
TotalRewardMean,
optimizer.param_groups[0]["lr"],
total_steps,
)
# print cost time as seconds
print("cost time:", time.time() - start_time)
# New Record! or save model
if ((is_save_model() or TotalRewardMean > best_reward) and args.save_model):
# check saveDir is exist
saveDir = "../PPO-Model/" + run_name + "/"
if not os.path.isdir(saveDir):
os.mkdir(saveDir)
best_reward = TotalRewardMean
torch.save(agent, saveDir + str(TotalRewardMean) + ".pt")
print("Model Saved!")
set_save_model(False)
else:
# train mode off
mean_reward_list = [] # for WANDB
# while not in training mode, clear the buffer
for this_train_ind in train_queue:
target_steps[this_train_ind] += 1
targetName = Targets(this_train_ind).name
target_reward_mean = np.mean(ppo_memories.rewards[this_train_ind].to("cpu").detach().numpy().copy())
mean_reward_list.append(target_reward_mean)
print(target_steps[this_train_ind])
# clear this target training set buffer
ppo_memories.clear_training_datasets(this_train_ind)
# clear this target trainning set buffer
obs[thisT] = torch.tensor([]).to(device)
actions[thisT] = torch.tensor([]).to(device)
dis_logprobs[thisT] = torch.tensor([]).to(device)
con_logprobs[thisT] = torch.tensor([]).to(device)
rewards[thisT] = torch.tensor([]).to(device)
values[thisT] = torch.tensor([]).to(device)
advantages[thisT] = torch.tensor([]).to(device)
returns[thisT] = torch.tensor([]).to(device)
# record rewards for plotting purposes
wdb_recorder.writer.add_scalar(f"Target{targetName}/Reward", target_reward_mean,
target_steps[this_train_ind])
wdb_recorder.add_win_ratio(targetName, target_steps[this_train_ind])
print(f"episode over Target{targetName} mean reward:", target_reward_mean)
TotalRewardMean = np.mean(mean_reward_list)
wdb_recorder.writer.add_scalar("GlobalCharts/TotalRewardMean", TotalRewardMean, total_steps)
writer.add_scalar(f"Target{targetName}/value_loss", v_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/dis_policy_loss", dis_pg_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/con_policy_loss", con_pg_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/total_loss", loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/entropy_loss", entropy_loss.item(), target_steps[thisT])
writer.add_scalar(f"Target{targetName}/Reward", targetRewardMean, target_steps[thisT])
writer.add_scalar(f"Target{targetName}/WinRatio", WinRounds[targetName]/TotalRounds[targetName], target_steps[thisT])
print(f"episode over Target{targetName} mean reward:", targetRewardMean)
TotalRewardMean = np.mean(meanRewardList)
writer.add_scalar("GlobalCharts/TotalRewardMean", TotalRewardMean, total_steps)
writer.add_scalar("GlobalCharts/learning_rate", optimizer.param_groups[0]["lr"], total_steps)
# New Record!
if TotalRewardMean > bestReward:
bestReward = targetRewardMean
saveDir = "../PPO-Model/Hybrid-MNN-500-300" + str(TotalRewardMean) + ".pt"
torch.save(agent, saveDir)
saveDir = "../PPO-Model/" + run_name + "/"
if not os.path.isdir(saveDir):
os.mkdir(saveDir)
best_reward = target_reward_mean
torch.save(agent, saveDir + "_last.pt")
saveDir = "../PPO-Model/Hybrid-MNN-500-300-Last" + ".pt"
torch.save(agent, saveDir)
env.close()
wdb_recorder.writer.close()
writer.close()

View File

@ -1,143 +0,0 @@
import torch
import numpy as np
import argparse
from ppoagent import PPOAgent
from enum import Enum
# public data
class Targets(Enum):
Free = 0
Go = 1
Attack = 2
Defence = 3
Num = 4
class PPOMem:
def __init__(
self,
args: argparse.Namespace,
unity_agent_num: int,
device: torch.device,
) -> None:
self.target_num = args.target_num
self.data_set_size = args.datasetSize
self.result_broadcast_ratio = args.result_broadcast_ratio
self.decision_period = args.decision_period
self.unity_agent_num = unity_agent_num
self.base_lose_reward = args.base_lose_reward
self.base_win_reward = args.base_win_reward
self.target_state_size = args.target_state_size
self.device = device
# Trajectory Buffer
self.ob_bf = [[] for i in range(self.unity_agent_num)]
self.act_bf = [[] for i in range(self.unity_agent_num)]
self.dis_logprobs_bf = [[] for i in range(self.unity_agent_num)]
self.con_logprobs_bf = [[] for i in range(self.unity_agent_num)]
self.rewards_bf = [[] for i in range(self.unity_agent_num)]
self.dones_bf = [[] for i in range(self.unity_agent_num)]
self.values_bf = [[] for i in range(self.unity_agent_num)]
# initialize empty training datasets
self.obs = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,env.unity_observation_size)
self.actions = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,env.unity_action_size)
self.dis_logprobs = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,1)
self.con_logprobs = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,1)
self.rewards = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,1)
self.values = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,1)
self.advantages = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,1)
self.returns = [torch.tensor([]).to(device) for i in range(self.target_num)] # (TARGETNUM,n,1)
def broad_cast_end_reward(self, rewardBF: list, remainTime: float) -> torch.Tensor:
thisRewardBF = rewardBF.copy()
if rewardBF[-1] <= -500:
# print("Lose DO NOT BROAD CAST",rewardBF[-1])
thisRewardBF[-1] = rewardBF[-1] - self.base_lose_reward
elif rewardBF[-1] >= 500:
# print("Win! Broadcast reward!",rewardBF[-1])
print(sum(thisRewardBF) / len(thisRewardBF))
thisRewardBF[-1] = rewardBF[-1] - self.base_win_reward
# broadcast result reward, increase all reward in this round by remainTime * self.result_broadcast_ratio
thisRewardBF = (np.asarray(thisRewardBF) + (remainTime * self.result_broadcast_ratio)).tolist()
else:
print("!!!!!DIDNT GET RESULT REWARD!!!!!!", rewardBF[-1])
return torch.tensor(thisRewardBF,dtype=torch.float32).to(self.device)
def save_memories(
self,
now_step: int,
agent: PPOAgent,
state: np.ndarray,
action_cpu: np.ndarray,
dis_logprob_cpu: np.ndarray,
con_logprob_cpu: np.ndarray,
reward: list,
done: list,
value_cpu: np.ndarray,
last_reward: list,
next_done: list,
next_state: np.ndarray,
):
for i in range(self.unity_agent_num):
if now_step % self.decision_period == 0 or next_done[i] == True:
# only on decision period or finished a round, save memories to buffer
self.ob_bf[i].append(state[i])
self.act_bf[i].append(action_cpu[i])
self.dis_logprobs_bf[i].append(dis_logprob_cpu[i])
self.con_logprobs_bf[i].append(con_logprob_cpu[i])
self.dones_bf[i].append(done[i])
self.values_bf[i].append(value_cpu[i])
if now_step % self.decision_period == 0:
# on decision period, add last skiped round's reward, only affact in decision_period != 1
self.rewards_bf[i].append(reward[i] + last_reward[i])
else:
# not on decision period, only add this round's reward
self.rewards_bf[i].append(reward[i])
if next_done[i] == True:
# finished a round, send finished memories to training datasets
# compute advantage and discounted reward
remainTime = state[i, self.target_state_size]
roundTargetType = int(state[i, 0])
thisRewardsTensor = self.broad_cast_end_reward(self.rewards_bf[i], remainTime)
adv, rt = agent.gae(
rewards=thisRewardsTensor,
dones=torch.tensor(self.dones_bf[i],dtype=torch.float32).to(self.device),
values=torch.tensor(self.values_bf[i]).to(self.device),
next_obs=torch.tensor(next_state[i]).to(self.device).unsqueeze(0),
next_done=torch.tensor([next_done[i]],dtype=torch.float32).to(self.device),
)
# send memories to training datasets
self.obs[roundTargetType] = torch.cat((self.obs[roundTargetType], torch.tensor(np.array(self.ob_bf[i])).to(self.device)), 0)
self.actions[roundTargetType] = torch.cat((self.actions[roundTargetType], torch.tensor(np.array(self.act_bf[i])).to(self.device)), 0)
self.dis_logprobs[roundTargetType] = torch.cat((self.dis_logprobs[roundTargetType], torch.tensor(np.array(self.dis_logprobs_bf[i])).to(self.device)), 0)
self.con_logprobs[roundTargetType] = torch.cat((self.con_logprobs[roundTargetType], torch.tensor(np.array(self.con_logprobs_bf[i])).to(self.device)), 0)
self.rewards[roundTargetType] = torch.cat((self.rewards[roundTargetType], thisRewardsTensor), 0)
self.values[roundTargetType] = torch.cat((self.values[roundTargetType], torch.tensor(np.array(self.values_bf[i])).to(self.device)), 0)
self.advantages[roundTargetType] = torch.cat((self.advantages[roundTargetType], adv), 0)
self.returns[roundTargetType] = torch.cat((self.returns[roundTargetType], rt), 0)
# clear buffers
self.clear_buffers(i)
print(f"train dataset {Targets(roundTargetType).name} added:{self.obs[roundTargetType].size()[0]}/{self.data_set_size}")
def clear_buffers(self,ind:int):
# clear buffers
self.ob_bf[ind] = []
self.act_bf[ind] = []
self.dis_logprobs_bf[ind] = []
self.con_logprobs_bf[ind] = []
self.rewards_bf[ind] = []
self.dones_bf[ind] = []
self.values_bf[ind] = []
def clear_training_datasets(self,ind:int):
# clear training datasets
self.obs[ind] = torch.tensor([]).to(self.device)
self.actions[ind] = torch.tensor([]).to(self.device)
self.dis_logprobs[ind] = torch.tensor([]).to(self.device)
self.con_logprobs[ind] = torch.tensor([]).to(self.device)
self.rewards[ind] = torch.tensor([]).to(self.device)
self.values[ind] = torch.tensor([]).to(self.device)
self.advantages[ind] = torch.tensor([]).to(self.device)
self.returns[ind] = torch.tensor([]).to(self.device)

View File

@ -1,81 +0,0 @@
from torch.utils.tensorboard import SummaryWriter
import wandb
total_rounds = {"Free": 0, "Go": 0, "Attack": 0}
win_rounds = {"Free": 0, "Go": 0, "Attack": 0}
# class for wandb recording
class WandbRecorder:
def __init__(self, game_name: str, game_type: str, run_name: str, _args) -> None:
# init wandb
self.game_name = game_name
self.game_type = game_type
self._args = _args
self.run_name = run_name
if self._args.wandb_track:
wandb.init(
project=self.game_name,
entity=self._args.wandb_entity,
sync_tensorboard=True,
config=vars(self._args),
name=self.run_name,
monitor_gym=True,
save_code=True,
)
self.writer = SummaryWriter(f"runs/{self.run_name}")
self.writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s"
% ("\n".join([f"|{key}|{value}|" for key, value in vars(self._args).items()])),
)
def add_target_scalar(
self,
target_name,
this_t,
v_loss,
dis_pg_loss,
con_pg_loss,
loss,
entropy_loss,
target_reward_mean,
target_steps,
):
# fmt:off
self.writer.add_scalar(
f"Target{target_name}/value_loss", v_loss.item(), target_steps[this_t]
)
self.writer.add_scalar(
f"Target{target_name}/dis_policy_loss", dis_pg_loss.item(), target_steps[this_t]
)
self.writer.add_scalar(
f"Target{target_name}/con_policy_loss", con_pg_loss.item(), target_steps[this_t]
)
self.writer.add_scalar(
f"Target{target_name}/total_loss", loss.item(), target_steps[this_t]
)
self.writer.add_scalar(
f"Target{target_name}/entropy_loss", entropy_loss.item(), target_steps[this_t]
)
self.writer.add_scalar(
f"Target{target_name}/Reward", target_reward_mean, target_steps[this_t]
)
self.writer.add_scalar(
f"Target{target_name}/WinRatio", win_rounds[target_name] / total_rounds[target_name], target_steps[this_t],
)
# fmt:on
def add_global_scalar(
self,
total_reward_mean,
learning_rate,
total_steps,
):
self.writer.add_scalar("GlobalCharts/TotalRewardMean", total_reward_mean, total_steps)
self.writer.add_scalar("GlobalCharts/learning_rate", learning_rate, total_steps)
def add_win_ratio(self, target_name, target_steps):
self.writer.add_scalar(
f"Target{target_name}/WinRatio", win_rounds[target_name] / total_rounds[target_name], target_steps,
)

View File

@ -1,56 +0,0 @@
本项目使用以下命令行参数来配置运行环境和模型训练参数:
- `--seed <int>`:实验的随机种子。默认值为`9331`。
- `--path <str>`:环境路径。默认值为`"./Build/3.6/Aimbot-ParallelEnv"`。
- `--workerID <int>`Unity worker ID。默认值为`1`。
- `--baseport <int>`用于连接Unity环境的端口。默认值为`500`。
- `--lr <float>`:优化器的默认学习率。默认值为`5e-5`。
- `--cuda`如果启用将默认使用cuda。可以通过传入`true`或`false`来开启或关闭。
- `--total-timesteps <int>`:实验的总时间步数。默认值为`3150000`。
### 模型参数
- `--train`:是否训练模型。默认启用。
- `--freeze-viewnet`:是否冻结视图网络(raycast)。默认为`False`。
- `--datasetSize <int>`:训练数据集的大小,当数据集收集足够的数据时开始训练。默认值为`6000`。
- `--minibatchSize <int>`minibatch大小。默认值为`512`。
- `--epochs <int>`更新策略的K次迭代。默认值为`3`。
- `--annealLR`:是否对策略和价值网络进行学习率退火。默认为`True`。
- `--wandb-track`是否在wandb上跟踪。默认为`False`。
- `--save-model`:是否保存模型。默认为`False`。
- `--wandb-entity <str>`wandb项目的实体。默认值为`"koha9"`。
- `--load-dir <str>`:模型加载目录。默认值为`None`。
- `--decision-period <int>`Timestep之间的动作执行间隔。默认值为`1`。
- `--result-broadcast-ratio <float>`当赢得回合时对结果的reward进行broadcast的比例默认值为`1/30`。
- `--target-lr <float>`:下调学习率的目标值。默认值为`1e-6`。
### 损失函数参数
- `--policy-coef <float>`:策略损失的系数。默认值为`[0.8, 0.8, 0.8, 0.8]`。
- `--entropy-coef <float>`:熵损失的系数。默认值为`[0.05, 0.05, 0.05, 0.05]`。
- `--critic-coef <float>`:评论家损失的系数。默认值为`[1.0, 1.0, 1.0, 1.0]`。
- `--loss-coef <float>`:总损失的系数。默认值为`[1.0, 1.0, 1.0, 1.0]`。
### GAE损失参数
- `--gae`是否使用GAE进行优势计算。默认启用。
- `--norm-adv`:是否标准化优势。默认为`False`。
- `--gamma <float>`折扣因子gamma。默认值为`0.999`。
- `--gaeLambda <float>`GAE的lambda值。默认值为`0.95`。
- `--clip-coef <float>`:替代裁剪系数。默认值为`0.11`。
- `--clip-vloss`:是否使用论文中的裁剪价值函数损失。默认启用。
- `--max-grad-norm <float>`:梯度裁剪的最大范数。默认值为`0.5`。
### 环境参数
- `--target-num <int>`:目标种类数量。默认值为`4`。
- `--env-timelimit <int>`:每轮的时间限制。默认值为`30`。
- `--base-win-reward <int>`:赢得回合的基础奖励。默认值为`999`。
- `--base-lose-reward <int>`:输掉回合的基础奖励。默认值为`-999`。
- `--target-state-size <int>`target状态的大小。默认值为`6`。
- `--time-state-size <int>`:游戏剩余时间状态的大小。默认值为`1`。
- `--gun-state-size <int>`:枪状态的大小。默认值为`1`。
- `--my-state-size <int>`:我的状态大小。默认值为`4`。
- `--total-target-size <int>`总target状态的大小。默认值为`12`。

View File

@ -1,52 +0,0 @@
- `--seed <int>`実験の乱数Seed。デフォルト値は`9331`。
- `--path <str>`:環境パス。デフォルト値は`"./Build/3.6/Aimbot-ParallelEnv"`。
- `--workerID <int>`Unity Worker ID。デフォルト値は`1`。
- `--baseport <int>`Unity環境への接続用Port。デフォルト値は`500`。
- `--lr <float>`Optimizerのデフォルト学習率。デフォルト値は`5e-5`。
- `--cuda`有効にすると、デフォルトでcudaを使用します。`true`または`false`を渡すことで有効/無効を切り替えられます。
- `--total-timesteps <int>`:実験の合計タイムステップ数。デフォルト値は`3150000`。
### モデルパラメータ
- `--train`:モデルを訓練するかどうか。デフォルトで有効。
- `--freeze-viewnet`:ビューネットワーク(raycast)をfreezeする。デフォルトは`False`。
- `--datasetSize <int>`:訓練データセットのサイズ。データセットが十分なデータを集めたら訓練を開始する。デフォルト値は`6000`。
- `--minibatchSize <int>`minibatchのサイズ。デフォルト値は`512`。
- `--epochs <int>`epochs。デフォルト値は`3`。
- `--annealLR`:ポリシーとバリューネットワークの学習率を退火するかどうか。デフォルトは`True`。
- `--wandb-track`wandbでトラッキングするかどうか。デフォルトは`False`。
- `--save-model`:モデルを保存するかどうか。デフォルトは`False`。
- `--wandb-entity <str>`wandbプロジェクトのエンティティ。デフォルト値は`"koha9"`。
- `--load-dir <str>`:モデルのロードディレクトリ。デフォルト値は`None`。
- `--decision-period <int>`:実際動作を実行する時のタイムステップの間隔。デフォルト値は`1`。
- `--result-broadcast-ratio <float>`ラウンドに勝った場合の報酬のbroadcast ratio、デフォルト値は`1/30`。
- `--target-lr <float>`:学習率を下げる時の目標値。デフォルト値は`1e-6`。
### 損失関数パラメータ
- `--policy-coef <float>`policy損失の係数。デフォルト値は`[0.8, 0.8, 0.8, 0.8]`。
- `--entropy-coef <float>`entropy損失の係数。デフォルト値は`[0.05, 0.05, 0.05, 0.05]`。
- `--critic-coef <float>`critic損失の係数。デフォルト値は`[1.0, 1.0, 1.0, 1.0]`。
- `--loss-coef <float>`:全体の損失の係数。デフォルト値は`[1.0, 1.0, 1.0, 1.0]`。
### GAE損失パラメータ
- `--gae`GAEを使用してアドバンテージを計算するかどうか。デフォルトで有効。
- `--norm-adv`:アドバンテージを正規化するかどうか。デフォルトは`False`。
- `--gamma <float>`割引因子gamma。デフォルト値は`0.999`。
- `--gaeLambda <float>`GAEのlambda値。デフォルト値は`0.95`。
- `--clip-coef <float>`:代替クリッピング係数。デフォルト値は`0.11`。
- `--clip-vloss`:論文で述べられている価値関数の損失のクリッピングを使用するかどうか。デフォルトで有効。
- `--max-grad-norm <float>`:勾配のクリッピングの最大ノルム。デフォルト値は`0.5`。
### 環境パラメータ
- `--target-num <int>`Targetの種類数。デフォルト値は`4`。
- `--env-timelimit <int>`:ラウンドごとの時間制限。デフォルト値は`30`。
- `--base-win-reward <int>`:ラウンドに勝った場合の基本報酬。デフォルト値は`999`。
- `--base-lose-reward <int>`:ラウンドに負けた場合の基本報酬。デフォルト値は`-999`。
- `--target-state-size <int>`Targetの状態サイズ。デフォルト値は`6`。
- `--time-state-size <int>`:ゲームの残り時間の状態サイズ。デフォルト値は`1`。
- `--gun-state-size <int>`:銃の状態サイズ。デフォルト値は`1`。
- `--my-state-size <int>`:自分の状態サイズ。デフォルト値は`4`。
- `--total-target-size <int>`全Targetの状態サイズ。デフォルト値は`12`。

View File

@ -1,159 +0,0 @@
import argparse
import uuid
from distutils.util import strtobool
DEFAULT_SEED = 9331
ENV_PATH = "../Build/3.6/Aimbot-ParallelEnv"
WAND_ENTITY = "koha9"
WORKER_ID = 1
BASE_PORT = 1000
# tensorboard names
# max round steps per agent is 2500/Decision_period, 25 seconds
TOTAL_STEPS = 3150000
BATCH_SIZE = 512
MAX_TRAINNING_DATASETS = 6000
DECISION_PERIOD = 1
LEARNING_RATE = 5e-5
GAMMA = 0.999
GAE_LAMBDA = 0.95
EPOCHS = 3
CLIP_COEF = 0.11
LOSS_COEF = [1.0, 1.0, 1.0, 1.0] # free go attack defence
POLICY_COEF = [0.8, 0.8, 0.8, 0.8]
ENTROPY_COEF = [0.05, 0.05, 0.05, 0.05]
CRITIC_COEF = [1.0, 1.0, 1.0, 1.0]
TARGET_LEARNING_RATE = 1e-6
FREEZE_VIEW_NETWORK = False
ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = False
TRAIN = True
SAVE_MODEL = True
WANDB_TACK = True
LOAD_DIR = None
# LOAD_DIR = "../PPO-Model/GotoOnly-Level1234_9331_1697122986/8.853553.pt"
# Unity Environment Parameters
TARGET_STATE_SIZE = 6
INAREA_STATE_SIZE = 1
TIME_STATE_SIZE = 1
GUN_STATE_SIZE = 1
MY_STATE_SIZE = 4
TOTAL_T_SIZE = TARGET_STATE_SIZE+INAREA_STATE_SIZE+TIME_STATE_SIZE+GUN_STATE_SIZE+MY_STATE_SIZE
BASE_WINREWARD = 999
BASE_LOSEREWARD = -999
TARGETNUM= 4
ENV_TIMELIMIT = 30
RESULT_BROADCAST_RATIO = 1/ENV_TIMELIMIT
save_model_this_episode = False
def is_save_model():
global save_model_this_episode
return save_model_this_episode
def set_save_model(save_model:bool):
print("set save model to ",save_model)
global save_model_this_episode
save_model_this_episode = save_model
def parse_args():
# fmt: off
# pytorch and environment parameters
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
help="seed of the experiment")
parser.add_argument("--path", type=str, default=ENV_PATH,
help="enviroment path")
parser.add_argument("--workerID", type=int, default=WORKER_ID,
help="unity worker ID")
parser.add_argument("--baseport", type=int, default=BASE_PORT,
help="port to connect to Unity environment")
parser.add_argument("--lr", type=float, default=LEARNING_RATE,
help="the default learning rate of optimizer")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
help="total timesteps of the experiments")
# model parameters
parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True,
help="Train Model or not")
parser.add_argument("--freeze-viewnet", type=lambda x: bool(strtobool(x)), default=FREEZE_VIEW_NETWORK, nargs="?", const=True,
help="freeze view network or not")
parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS,
help="training dataset size,start training while dataset collect enough data")
parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE,
help="nimi batch size")
parser.add_argument("--epochs", type=int, default=EPOCHS,
help="the K epochs to update the policy")
parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
help="track on the wandb")
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=SAVE_MODEL, nargs="?", const=True,
help="save model or not")
parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
help="the entity (team) of wandb's project")
parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
help="load model directory")
parser.add_argument("--decision-period", type=int, default=DECISION_PERIOD,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--result-broadcast-ratio", type=float, default=RESULT_BROADCAST_RATIO,
help="broadcast result when win round is reached,r=result-broadcast-ratio*remainTime")
# target_learning_rate
parser.add_argument("--target-lr", type=float, default=TARGET_LEARNING_RATE,
help="target value of downscaling the learning rate")
# POLICY_COEF ENTROPY_COEF CRITIC_COEF LOSS_COEF
parser.add_argument("--policy-coef", type=float, default=POLICY_COEF,
help="coefficient of the policy loss")
parser.add_argument("--entropy-coef", type=float, default=ENTROPY_COEF,
help="coefficient of the entropy loss")
parser.add_argument("--critic-coef", type=float, default=CRITIC_COEF,
help="coefficient of the critic loss")
parser.add_argument("--loss-coef", type=float, default=LOSS_COEF,
help="coefficient of the total loss")
# GAE loss
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=NORM_ADV, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--gamma", type=float, default=GAMMA,
help="the discount factor gamma")
parser.add_argument("--gaeLambda", type=float, default=GAE_LAMBDA,
help="the lambda for the general advantage estimation")
parser.add_argument("--clip-coef", type=float, default=CLIP_COEF,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=CLIP_VLOSS, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
# environment parameters
parser.add_argument("--target-num", type=int, default=TARGETNUM,
help="the number of targets")
parser.add_argument("--env-timelimit", type=int, default=ENV_TIMELIMIT,
help="the time limit of each round")
parser.add_argument("--base-win-reward", type=int, default=BASE_WINREWARD,
help="the base reward of win round")
parser.add_argument("--base-lose-reward", type=int, default=BASE_LOSEREWARD,
help="the base reward of lose round")
parser.add_argument("--target-state-size", type=int, default=TARGET_STATE_SIZE,
help="the size of target state")
parser.add_argument("--time-state-size", type=int, default=TIME_STATE_SIZE,
help="the size of time state")
parser.add_argument("--gun-state-size", type=int, default=GUN_STATE_SIZE,
help="the size of gun state")
parser.add_argument("--my-state-size", type=int, default=MY_STATE_SIZE,
help="the size of my state")
parser.add_argument("--total-target-size", type=int, default=TOTAL_T_SIZE,
help="the size of total target state")
# fmt: on
args = parser.parse_args()
return args

View File

@ -1,291 +0,0 @@
import numpy as np
import torch
import argparse
import time
from torch import nn
from aimbotEnv import Aimbot
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
nn.init.orthogonal_(layer.weight, std)
nn.init.constant_(layer.bias, bias_const)
return layer
neural_size_1 = 400
neural_size_2 = 300
class PPOAgent(nn.Module):
def __init__(
self,
env: Aimbot,
this_args: argparse.Namespace,
device: torch.device,
):
super(PPOAgent, self).__init__()
self.device = device
self.args = this_args
self.train_agent = self.args.train
self.target_num = self.args.target_num
self.unity_observation_shape = env.unity_observation_shape
self.unity_action_size = env.unity_action_size
self.state_size = self.unity_observation_shape[0]
self.agent_num = env.unity_agent_num
self.unity_discrete_type = env.unity_discrete_type
self.discrete_size = env.unity_discrete_size
self.discrete_shape = list(env.unity_discrete_branches)
self.continuous_size = env.unity_continuous_size
self.hidden_networks = nn.ModuleList(
[
nn.Sequential(
layer_init(nn.Linear(self.state_size, neural_size_1)),
nn.LeakyReLU(),
layer_init(nn.Linear(neural_size_1, neural_size_2)),
nn.LeakyReLU(),
)
for i in range(self.target_num)
]
)
self.actor_dis = nn.ModuleList(
[layer_init(nn.Linear(neural_size_2, self.discrete_size), std=0.5) for i in range(self.target_num)]
)
self.actor_mean = nn.ModuleList(
[layer_init(nn.Linear(neural_size_2, self.continuous_size), std=0) for i in range(self.target_num)]
)
self.actor_logstd = nn.ParameterList(
[nn.Parameter(torch.zeros(1, self.continuous_size)) for i in range(self.target_num)]
)
self.critic = nn.ModuleList(
[layer_init(nn.Linear(neural_size_2, 1), std=0) for i in range(self.target_num)]
)
def get_value(self, state: torch.Tensor):
# get critic value
# state.size()[0] is batch_size
target = state[:, 0].to(torch.int32) # int
hidden_output = torch.stack(
[self.hidden_networks[target[i]](state[i]) for i in range(state.size()[0])]
)
criticV = torch.stack(
[self.critic[target[i]](hidden_output[i]) for i in range(state.size()[0])]
)
return criticV
def get_actions_value(self, state: torch.Tensor, actions=None):
# get actions and value
target = state[:, 0].to(torch.int32) # int
hidden_output = torch.stack(
[self.hidden_networks[target[i]](state[i]) for i in range(target.size()[0])]
)
# discrete
# 递归targets的数量,既agent数来实现根据target不同来选用对应的输出网络计算输出
dis_logits = torch.stack(
[self.actor_dis[target[i]](hidden_output[i]) for i in range(target.size()[0])]
)
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
# continuous
actions_mean = torch.stack(
[self.actor_mean[target[i]](hidden_output[i]) for i in range(target.size()[0])]
) # self.actor_mean(hidden)
action_logstd = torch.stack(
[torch.squeeze(self.actor_logstd[target[i]], 0) for i in range(target.size()[0])]
)
# print(action_logstd)
action_std = torch.exp(action_logstd) # torch.exp(action_logstd)
con_probs = Normal(actions_mean, action_std)
# critic
criticV = torch.stack(
[self.critic[target[i]](hidden_output[i]) for i in range(target.size()[0])]
) # self.critic
if actions is None:
if self.train_agent:
# select actions base on probability distribution model
dis_act = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
con_act = con_probs.sample()
actions = torch.cat([dis_act.T, con_act], dim=1)
else:
# select actions base on best probability distribution
dis_act = torch.stack([torch.argmax(logit, dim=1) for logit in split_logits])
con_act = actions_mean
actions = torch.cat([dis_act.T, con_act], dim=1)
else:
dis_act = actions[:, 0: self.unity_discrete_type].T
con_act = actions[:, self.unity_discrete_type:]
dis_log_prob = torch.stack(
[ctgr.log_prob(act) for act, ctgr in zip(dis_act, multi_categoricals)]
)
dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
return (
actions,
dis_log_prob.sum(0),
dis_entropy.sum(0),
con_probs.log_prob(con_act).sum(1),
con_probs.entropy().sum(1),
criticV,
)
def train_net(self, this_train_ind: int, ppo_memories, optimizer) -> tuple:
start_time = time.time()
# flatten the batch
b_obs = ppo_memories.obs[this_train_ind].reshape((-1,) + self.unity_observation_shape)
b_dis_logprobs = ppo_memories.dis_logprobs[this_train_ind].reshape(-1)
b_con_logprobs = ppo_memories.con_logprobs[this_train_ind].reshape(-1)
b_actions = ppo_memories.actions[this_train_ind].reshape((-1,) + (self.unity_action_size,))
b_advantages = ppo_memories.advantages[this_train_ind].reshape(-1)
b_returns = ppo_memories.returns[this_train_ind].reshape(-1)
b_values = ppo_memories.values[this_train_ind].reshape(-1)
b_size = b_obs.size()[0]
# optimizing the policy and value network
b_index = np.arange(b_size)
for epoch in range(self.args.epochs):
print("epoch:", epoch, end="")
# shuffle all datasets
np.random.shuffle(b_index)
for start in range(0, b_size, self.args.minibatchSize):
print(".", end="")
end = start + self.args.minibatchSize
mb_index = b_index[start:end]
if np.size(mb_index) <= 1:
break
mb_advantages = b_advantages[mb_index]
# normalize advantages
if self.args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (
mb_advantages.std() + 1e-8
)
(
_,
new_dis_logprob,
dis_entropy,
new_con_logprob,
con_entropy,
new_value,
) = self.get_actions_value(b_obs[mb_index], b_actions[mb_index])
# discrete ratio
dis_log_ratio = new_dis_logprob - b_dis_logprobs[mb_index]
dis_ratio = dis_log_ratio.exp()
# continuous ratio
con_log_ratio = new_con_logprob - b_con_logprobs[mb_index]
con_ratio = con_log_ratio.exp()
"""
# early stop
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
"""
# discrete Policy loss
dis_pg_loss_orig = -mb_advantages * dis_ratio
dis_pg_loss_clip = -mb_advantages * torch.clamp(
dis_ratio, 1 - self.args.clip_coef, 1 + self.args.clip_coef
)
dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
# continuous Policy loss
con_pg_loss_orig = -mb_advantages * con_ratio
con_pg_loss_clip = -mb_advantages * torch.clamp(
con_ratio, 1 - self.args.clip_coef, 1 + self.args.clip_coef
)
con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()
# Value loss
new_value = new_value.view(-1)
if self.args.clip_vloss:
v_loss_unclipped = (new_value - b_returns[mb_index]) ** 2
v_clipped = b_values[mb_index] + torch.clamp(
new_value - b_values[mb_index],
-self.args.clip_coef,
self.args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_index]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((new_value - b_returns[mb_index]) ** 2).mean()
# total loss
entropy_loss = dis_entropy.mean() + con_entropy.mean()
loss = (
dis_pg_loss * self.args.policy_coef[this_train_ind]
+ con_pg_loss * self.args.policy_coef[this_train_ind]
+ entropy_loss * self.args.entropy_coef[this_train_ind]
+ v_loss * self.args.critic_coef[this_train_ind]
) * self.args.loss_coef[this_train_ind]
if torch.isnan(loss).any():
print("LOSS Include NAN!!!")
if torch.isnan(dis_pg_loss.any()):
print("dis_pg_loss include nan")
if torch.isnan(con_pg_loss.any()):
print("con_pg_loss include nan")
if torch.isnan(entropy_loss.any()):
print("entropy_loss include nan")
if torch.isnan(v_loss.any()):
print("v_loss include nan")
raise
optimizer.zero_grad()
loss.backward()
# Clips gradient norm of an iterable of parameters.
nn.utils.clip_grad_norm_(self.parameters(), self.args.max_grad_norm)
optimizer.step()
"""
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
"""
return v_loss, dis_pg_loss, con_pg_loss, loss, entropy_loss
def gae(
self,
rewards: torch.Tensor,
dones: torch.Tensor,
values: torch.Tensor,
next_obs: torch.Tensor,
next_done: torch.Tensor,
) -> tuple:
# GAE
with torch.no_grad():
next_value = self.get_value(next_obs).reshape(1, -1)
data_size = rewards.size()[0]
if self.args.gae:
advantages = torch.zeros_like(rewards).to(self.device)
last_gae_lam = 0
for t in reversed(range(data_size)):
if t == data_size - 1:
next_non_terminal = 1.0 - next_done
next_values = next_value
else:
next_non_terminal = 1.0 - dones[t + 1]
next_values = values[t + 1]
delta = rewards[t] + self.args.gamma * next_values * next_non_terminal - values[t]
advantages[t] = last_gae_lam = (
delta + self.args.gamma * self.args.gaeLambda * next_non_terminal * last_gae_lam
)
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(self.device)
for t in reversed(range(data_size)):
if t == data_size - 1:
next_non_terminal = 1.0 - next_done
next_return = next_value
else:
next_non_terminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + self.args.gamma * next_non_terminal * next_return
advantages = returns - values
return advantages, returns

View File

@ -0,0 +1,847 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Action, 1 continuous ctrl 2.1\n",
"Action, 0 continuous ctrl -1.1\n"
]
}
],
"source": [
"import gym\n",
"from gym.spaces import Dict, Discrete, Box, Tuple\n",
"import numpy as np\n",
"\n",
"\n",
"class SampleGym(gym.Env):\n",
" def __init__(self, config={}):\n",
" self.config = config\n",
" self.action_space = Tuple((Discrete(2), Box(-10, 10, (2,))))\n",
" self.observation_space = Box(-10, 10, (2, 2))\n",
" self.p_done = config.get(\"p_done\", 0.1)\n",
"\n",
" def reset(self):\n",
" return self.observation_space.sample()\n",
"\n",
" def step(self, action):\n",
" chosen_action = action[0]\n",
" cnt_control = action[1][chosen_action]\n",
"\n",
" if chosen_action == 0:\n",
" reward = cnt_control\n",
" else:\n",
" reward = -cnt_control - 1\n",
"\n",
" print(f\"Action, {chosen_action} continuous ctrl {cnt_control}\")\n",
" return (\n",
" self.observation_space.sample(),\n",
" reward,\n",
" bool(np.random.choice([True, False], p=[self.p_done, 1.0 - self.p_done])),\n",
" {},\n",
" )\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" env = SampleGym()\n",
" env.reset()\n",
" env.step((1, [-1, 2.1])) # should say use action 1 with 2.1\n",
" env.step((0, [-1.1, 2.1])) # should say use action 0 with -1.1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from mlagents_envs.environment import UnityEnvironment\n",
"from gym_unity.envs import UnityToGymWrapper\n",
"import numpy as np\n",
"\n",
"ENV_PATH = \"../Build-ParallelEnv/Aimbot-ParallelEnv\"\n",
"WORKER_ID = 1\n",
"BASE_PORT = 2002\n",
"\n",
"env = UnityEnvironment(\n",
" file_name=ENV_PATH,\n",
" seed=1,\n",
" side_channels=[],\n",
" worker_id=WORKER_ID,\n",
" base_port=BASE_PORT,\n",
")\n",
"\n",
"trackedAgent = 0\n",
"env.reset()\n",
"BEHA_SPECS = env.behavior_specs\n",
"BEHA_NAME = list(BEHA_SPECS)[0]\n",
"SPEC = BEHA_SPECS[BEHA_NAME]\n",
"print(SPEC)\n",
"\n",
"decisionSteps, terminalSteps = env.get_steps(BEHA_NAME)\n",
"\n",
"if trackedAgent in decisionSteps: # ゲーム終了していない場合、環境状態がdecision_stepsに保存される\n",
" nextState = decisionSteps[trackedAgent].obs[0]\n",
" reward = decisionSteps[trackedAgent].reward\n",
" done = False\n",
"if trackedAgent in terminalSteps: # ゲーム終了した場合、環境状態がterminal_stepsに保存される\n",
" nextState = terminalSteps[trackedAgent].obs[0]\n",
" reward = terminalSteps[trackedAgent].reward\n",
" done = True\n",
"print(decisionSteps.agent_id)\n",
"print(terminalSteps)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"decisionSteps.agent_id [1 2 5 7]\n",
"decisionSteps.agent_id_to_index {1: 0, 2: 1, 5: 2, 7: 3}\n",
"decisionSteps.reward [0. 0. 0. 0.]\n",
"decisionSteps.action_mask [array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False],\n",
" [False, False],\n",
" [False, False],\n",
" [False, False]])]\n",
"decisionSteps.obs [ 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0.\n",
" 0. 0. -15.994009 1. -26.322788 1.\n",
" 1. 1. 1. 1. 1. 2.\n",
" 1. 1. 1. 1. 1. 1.\n",
" 1. 1.3519633 1.6946528 2.3051548 3.673389 9.067246\n",
" 17.521473 21.727095 22.753294 24.167128 25.905216 18.35725\n",
" 21.02278 21.053417 0. ]\n"
]
},
{
"data": {
"text/plain": [
"'decisionSteps.obs [array([[-15.994009 , 1. , -26.322788 , 1. , 1. ,\\n 1. , 1. , 1. , 1. , 2. ,\\n 1. , 1. , 1. , 1. , 1. ,\\n 1. , 1. , 1.3519633, 1.6946528, 2.3051548,\\n 3.673389 , 9.067246 , 17.521473 , 21.727095 , 22.753294 ,\\n 24.167128 , 25.905216 , 18.35725 , 21.02278 , 21.053417 ,\\n 0. ],\\n [ -1.8809433, 1. , -25.66834 , 1. , 2. ,\\n 1. , 1. , 1. , 1. , 1. ,\\n 1. , 1. , 1. , 1. , 1. ,\\n 1. , 1. , 16.768637 , 23.414627 , 22.04486 ,\\n 21.050663 , 20.486784 , 20.486784 , 21.050665 , 15.049731 ,\\n 11.578419 , 9.695194 , 20.398016 , 20.368341 , 20.398016 ,\\n...\\n 20.551746 , 20.00118 , 20.001116 , 20.551594 , 21.5222 ,\\n 17.707508 , 14.86889 , 19.914494 , 19.885508 , 19.914463 ,\\n 0. ]], dtype=float32)]'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\"decisionSteps.agent_id\",decisionSteps.agent_id)\n",
"# decisionSteps.agent_id [1 2 5 7]\n",
"print(\"decisionSteps.agent_id_to_index\",decisionSteps.agent_id_to_index)\n",
"# decisionSteps.agent_id_to_index {1: 0, 2: 1, 5: 2, 7: 3}\n",
"print(\"decisionSteps.reward\",decisionSteps.reward)\n",
"# decisionSteps.reward [0. 0. 0. 0.]\n",
"print(\"decisionSteps.action_mask\",decisionSteps.action_mask)\n",
"'''\n",
"decisionSteps.action_mask [array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False, False],\n",
" [False, False, False],\n",
" [False, False, False],\n",
" [False, False, False]]), array([[False, False],\n",
" [False, False],\n",
" [False, False],\n",
" [False, False]])]\n",
"'''\n",
"print(\"decisionSteps.obs\", decisionSteps.obs[0][0])\n",
"'''decisionSteps.obs [array([[-15.994009 , 1. , -26.322788 , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 2. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1.3519633, 1.6946528, 2.3051548,\n",
" 3.673389 , 9.067246 , 17.521473 , 21.727095 , 22.753294 ,\n",
" 24.167128 , 25.905216 , 18.35725 , 21.02278 , 21.053417 ,\n",
" 0. ],\n",
" [ -1.8809433, 1. , -25.66834 , 1. , 2. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 16.768637 , 23.414627 , 22.04486 ,\n",
" 21.050663 , 20.486784 , 20.486784 , 21.050665 , 15.049731 ,\n",
" 11.578419 , 9.695194 , 20.398016 , 20.368341 , 20.398016 ,\n",
"...\n",
" 20.551746 , 20.00118 , 20.001116 , 20.551594 , 21.5222 ,\n",
" 17.707508 , 14.86889 , 19.914494 , 19.885508 , 19.914463 ,\n",
" 0. ]], dtype=float32)]'''\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from AimbotEnv import Aimbot\n",
"\n",
"ENV_PATH = \"../Build-ParallelEnv/Aimbot-ParallelEnv\"\n",
"WORKER_ID = 1\n",
"BASE_PORT = 2002\n",
"\n",
"env = Aimbot(envPath=ENV_PATH,workerID= WORKER_ID,basePort= BASE_PORT)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([[ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -15.994009 , 1. , -26.322788 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 2. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1.3519633, 1.6946528,\n",
" 2.3051548, 3.673389 , 9.067246 , 17.521473 , 21.727095 ,\n",
" 22.753294 , 24.167128 , 25.905216 , 18.35725 , 21.02278 ,\n",
" 21.053417 , 0. , -15.994003 , 1. , -26.322784 ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1.3519667,\n",
" 1.6946585, 2.3051722, 3.6734192, 9.067533 , 21.145092 ,\n",
" 21.727148 , 22.753365 , 24.167217 , 25.905317 , 18.358263 ,\n",
" 21.022812 , 21.053455 , 0. ],\n",
" [ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -1.8809433, 1. , -25.66834 , 1. ,\n",
" 2. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 16.768637 , 23.414627 ,\n",
" 22.04486 , 21.050663 , 20.486784 , 20.486784 , 21.050665 ,\n",
" 15.049731 , 11.578419 , 9.695194 , 20.398016 , 20.368341 ,\n",
" 20.398016 , 0. , -1.8809433, 1. , -25.66834 ,\n",
" 1. , 1. , 2. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 2. ,\n",
" 2. , 1. , 1. , 1. , 25.098585 ,\n",
" 15.749494 , 22.044899 , 21.050697 , 20.486813 , 20.486813 ,\n",
" 21.050694 , 15.049746 , 3.872317 , 3.789325 , 20.398046 ,\n",
" 20.368372 , 20.398046 , 0. ],\n",
" [ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -13.672583 , 1. , -26.479263 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 5.3249803, 6.401276 ,\n",
" 8.374101 , 12.8657875, 21.302414 , 21.30242 , 21.888742 ,\n",
" 22.92251 , 24.346794 , 26.09773 , 21.210114 , 21.179258 ,\n",
" 21.210117 , 0. , -13.672583 , 1. , -26.479263 ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 2. , 1. , 1. ,\n",
" 2. , 1. , 1. , 2. , 5.3249855,\n",
" 6.4012837, 8.374114 , 12.865807 , 21.302446 , 21.30245 ,\n",
" 16.168503 , 22.922543 , 24.346823 , 7.1110754, 21.210148 ,\n",
" 21.17929 , 12.495141 , 0. ],\n",
" [ 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 0. , 0. , 0. ,\n",
" 0. , -4.9038744, 1. , -25.185507 , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 20.33171 , 22.859762 ,\n",
" 21.522427 , 20.551746 , 20.00118 , 20.001116 , 20.551594 ,\n",
" 21.5222 , 17.707508 , 14.86889 , 19.914494 , 19.885508 ,\n",
" 19.914463 , 0. , -4.9038773, 1. , -25.185507 ,\n",
" 1. , 2. , 1. , 2. , 1. ,\n",
" 1. , 1. , 1. , 2. , 1. ,\n",
" 1. , 1. , 1. , 1. , 15.905993 ,\n",
" 22.85977 , 11.566693 , 20.551773 , 20.00121 , 20.001146 ,\n",
" 20.551619 , 7.135157 , 17.707582 , 14.868943 , 19.914528 ,\n",
" 19.88554 , 19.914494 , 0. ]], dtype=float32),\n",
" [[-0.05], [-0.05], [-0.05], [-0.05]],\n",
" [[False], [False], [False], [False]])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"env.unity_observation_shape\n",
"(128, 4) + env.unity_observation_shape\n",
"env.reset()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[1, 2, 3],\n",
" [1, 2, 3],\n",
" [1, 2, 3],\n",
" [1, 2, 3]], device='cuda:0')\n",
"tensor([[1],\n",
" [2],\n",
" [3],\n",
" [4]], device='cuda:0')\n"
]
},
{
"data": {
"text/plain": [
"tensor([[1, 2, 3, 1],\n",
" [1, 2, 3, 2],\n",
" [1, 2, 3, 3],\n",
" [1, 2, 3, 4]], device='cuda:0')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"aa = torch.tensor([[1,2,3],[1,2,3],[1,2,3],[1,2,3]]).to(\"cuda:0\")\n",
"bb = torch.tensor([[1],[2],[3],[4]]).to(\"cuda:0\")\n",
"print(aa)\n",
"print(bb)\n",
"torch.cat([aa,bb],axis = 1)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "Can't get attribute 'PPOAgent' on <module '__main__'>",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_31348\\1930153251.py\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mmymodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"../PPO-Model/SmallArea-256-128-hybrid.pt\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mmymodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0meval\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mc:\\Users\\UCUNI\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mload\u001b[1;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[0;32m 710\u001b[0m \u001b[0mopened_file\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mseek\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0morig_position\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 711\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mjit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopened_file\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 712\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_load\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopened_zipfile\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmap_location\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpickle_module\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mpickle_load_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 713\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0m_legacy_load\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopened_file\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmap_location\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpickle_module\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mpickle_load_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 714\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mc:\\Users\\UCUNI\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36m_load\u001b[1;34m(zip_file, map_location, pickle_module, pickle_file, **pickle_load_args)\u001b[0m\n\u001b[0;32m 1047\u001b[0m \u001b[0munpickler\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mUnpicklerWrapper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata_file\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mpickle_load_args\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1048\u001b[0m \u001b[0munpickler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpersistent_load\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpersistent_load\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1049\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0munpickler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1050\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1051\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_utils\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_validate_loaded_sparse_tensors\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32mc:\\Users\\UCUNI\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\torch\\serialization.py\u001b[0m in \u001b[0;36mfind_class\u001b[1;34m(self, mod_name, name)\u001b[0m\n\u001b[0;32m 1040\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1041\u001b[0m \u001b[0mmod_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_module_mapping\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmod_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmod_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1042\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfind_class\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmod_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1043\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1044\u001b[0m \u001b[1;31m# Load the data (which may in turn use `persistent_load` to load tensors)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mAttributeError\u001b[0m: Can't get attribute 'PPOAgent' on <module '__main__'>"
]
}
],
"source": [
"import torch\n",
"\n",
"def layer_init(layer, std=np.sqrt(2), bias_const=0.0):\n",
" torch.nn.init.orthogonal_(layer.weight, std)\n",
" torch.nn.init.constant_(layer.bias, bias_const)\n",
" return layer\n",
"\n",
"class PPOAgent(nn.Module):\n",
" def __init__(self, env: Aimbot):\n",
" super(PPOAgent, self).__init__()\n",
" self.discrete_size = env.unity_discrete_size\n",
" self.discrete_shape = list(env.unity_discrete_branches)\n",
" self.continuous_size = env.unity_continuous_size\n",
"\n",
" self.network = nn.Sequential(\n",
" layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 256)),\n",
" nn.ReLU(),\n",
" layer_init(nn.Linear(256, 128)),\n",
" nn.ReLU(),\n",
" )\n",
" self.actor_dis = layer_init(nn.Linear(128, self.discrete_size), std=0.01)\n",
" self.actor_mean = layer_init(nn.Linear(128, self.continuous_size), std=0.01)\n",
" self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))\n",
" self.critic = layer_init(nn.Linear(128, 1), std=1)\n",
"\n",
" def get_value(self, state: torch.Tensor):\n",
" return self.critic(self.network(state))\n",
"\n",
" def get_actions_value(self, state: torch.Tensor, actions=None):\n",
" hidden = self.network(state)\n",
" # discrete\n",
" dis_logits = self.actor_dis(hidden)\n",
" split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)\n",
" multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]\n",
" # continuous\n",
" actions_mean = self.actor_mean(hidden)\n",
" action_logstd = self.actor_logstd.expand_as(actions_mean)\n",
" action_std = torch.exp(action_logstd)\n",
" con_probs = Normal(actions_mean, action_std)\n",
"\n",
" if actions is None:\n",
" disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])\n",
" conAct = con_probs.sample()\n",
" actions = torch.cat([disAct.T, conAct], dim=1)\n",
" else:\n",
" disAct = actions[:, 0 : env.unity_discrete_type].T\n",
" conAct = actions[:, env.unity_discrete_type :]\n",
" dis_log_prob = torch.stack(\n",
" [ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]\n",
" )\n",
" dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])\n",
" return (\n",
" actions,\n",
" dis_log_prob.sum(0),\n",
" dis_entropy.sum(0),\n",
" con_probs.log_prob(conAct).sum(1),\n",
" con_probs.entropy().sum(1),\n",
" self.critic(hidden),\n",
" )\n",
"\n",
"\n",
"mymodel = torch.load(\"../PPO-Model/SmallArea-256-128-hybrid.pt\")\n",
"mymodel.eval()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import numpy as np\n",
"\n",
"x = torch.randn(2, 3).to(\"cuda\")\n",
"print(x)\n",
"print(torch.cat((x, x, x), 0))\n",
"print(torch.cat((x, x, x), 1))\n",
"\n",
"aa = torch.empty(0).to(\"cuda\")\n",
"torch.cat([aa,x])\n",
"bb = [[]]*2\n",
"print(bb)\n",
"bb.append(x.to(\"cpu\").tolist())\n",
"bb.append(x.to(\"cpu\").tolist())\n",
"print(bb)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[-1.1090, 0.4686, 0.6883],\n",
" [-0.1862, -0.3943, -0.0202],\n",
" [ 0.1436, -0.9444, -1.2079],\n",
" [-2.9434, -2.5989, -0.6653],\n",
" [ 0.4668, 0.8548, -0.4641],\n",
" [-0.3956, -0.2832, -0.1889],\n",
" [-0.2801, -0.2092, 1.7254],\n",
" [ 2.7938, -0.7742, 0.7053]], device='cuda:0')\n",
"(8, 0)\n",
"---\n",
"[[array([-1.1090169, 0.4685607, 0.6883437], dtype=float32)], [array([-0.1861974 , -0.39429024, -0.02016036], dtype=float32)], [array([ 0.14360362, -0.9443668 , -1.2079065 ], dtype=float32)], [array([-2.9433894 , -2.598913 , -0.66532046], dtype=float32)], [array([ 0.46684313, 0.8547877 , -0.46408093], dtype=float32)], [array([-0.39563984, -0.2831819 , -0.18891 ], dtype=float32)], [array([-0.28008553, -0.20918302, 1.7253567 ], dtype=float32)], [array([ 2.7938051, -0.7742478, 0.705279 ], dtype=float32)]]\n",
"[[array([-1.1090169, 0.4685607, 0.6883437], dtype=float32)], [], [array([ 0.14360362, -0.9443668 , -1.2079065 ], dtype=float32)], [array([-2.9433894 , -2.598913 , -0.66532046], dtype=float32)], [array([ 0.46684313, 0.8547877 , -0.46408093], dtype=float32)], [array([-0.39563984, -0.2831819 , -0.18891 ], dtype=float32)], [array([-0.28008553, -0.20918302, 1.7253567 ], dtype=float32)], [array([ 2.7938051, -0.7742478, 0.705279 ], dtype=float32)]]\n",
"---\n",
"[array([-1.1090169, 0.4685607, 0.6883437], dtype=float32), array([-1.1090169, 0.4685607, 0.6883437], dtype=float32)]\n",
"vvv tensor([[-1.1090, 0.4686, 0.6883],\n",
" [-1.1090, 0.4686, 0.6883]], device='cuda:0')\n",
"tensor([[-1.1090, 0.4686, 0.6883],\n",
" [-1.1090, 0.4686, 0.6883]], device='cuda:0')\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import torch\n",
"\n",
"agent_num = 8\n",
"ob_buffer = [[]for i in range(agent_num)]\n",
"obs = torch.randn(8, 3).to(\"cuda\")\n",
"print(obs)\n",
"print(np.shape(np.array(ob_buffer)))\n",
"print('---')\n",
"obs_cpu = obs.to(\"cpu\").numpy()\n",
"for i in range(agent_num):\n",
" ob_buffer[i].append(obs_cpu[i])\n",
"print(ob_buffer)\n",
"ob_buffer[1] = []\n",
"print(ob_buffer)\n",
"print('---')\n",
"for i in range(agent_num):\n",
" ob_buffer[i].append(obs_cpu[i])\n",
"print(ob_buffer[0])\n",
"vvv = torch.tensor(ob_buffer[0]).to(\"cuda\")\n",
"print(\"vvv\",vvv)\n",
"empt = torch.tensor([]).to(\"cuda\")\n",
"vvvv = torch.cat((empt,vvv),0)\n",
"print(vvvv)\n",
"vvvv.size()[0]>0"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from AimbotEnv import Aimbot\n",
"from enum import Enum\n",
"import uuid\n",
"from mlagents_envs.side_channel.side_channel import (\n",
" SideChannel,\n",
" IncomingMessage,\n",
" OutgoingMessage,\n",
")\n",
"from typing import List\n",
"\n",
"class Targets(Enum):\n",
" Free = 0\n",
" Go = 1\n",
" Attack = 2\n",
" Num = 3\n",
"TotalRounds = {\"Go\":0,\"Attack\":0,\"Free\":0}\n",
"WinRounds = {\"Go\":0,\"Attack\":0,\"Free\":0}\n",
"\n",
"class AimbotSideChannel(SideChannel):\n",
" def __init__(self, channel_id: uuid.UUID) -> None:\n",
" super().__init__(channel_id)\n",
" def on_message_received(self, msg: IncomingMessage) -> None:\n",
" \"\"\"\n",
" Note: We must implement this method of the SideChannel interface to\n",
" receive messages from Unity\n",
" \"\"\"\n",
" thisMessage = msg.read_string()\n",
" #print(thisMessage)\n",
" thisResult = thisMessage.split(\"|\")\n",
" if(thisResult[0] == \"result\"):\n",
" TotalRounds[thisResult[1]]+=1\n",
" if(thisResult[2] == \"Win\"):\n",
" WinRounds[thisResult[1]]+=1\n",
" #print(TotalRounds)\n",
" #print(WinRounds)\n",
" elif(thisResult[0] == \"Error\"):\n",
" print(thisMessage)\n",
"\t# 发送函数\n",
" def send_string(self, data: str) -> None:\n",
" \"\"\"发送一个字符串给C#\"\"\"\n",
" msg = OutgoingMessage()\n",
" msg.write_string(data)\n",
" super().queue_message_to_send(msg)\n",
"\n",
" def send_bool(self, data: bool) -> None:\n",
" msg = OutgoingMessage()\n",
" msg.write_bool(data)\n",
" super().queue_message_to_send(msg)\n",
"\n",
" def send_int(self, data: int) -> None:\n",
" msg = OutgoingMessage()\n",
" msg.write_int32(data)\n",
" super().queue_message_to_send(msg)\n",
"\n",
" def send_float(self, data: float) -> None:\n",
" msg = OutgoingMessage()\n",
" msg.write_float32(data)\n",
" super().queue_message_to_send(msg)\n",
"\n",
" def send_float_list(self, data: List[float]) -> None:\n",
" msg = OutgoingMessage()\n",
" msg.write_float32_list(data)\n",
" super().queue_message_to_send(msg)\n",
" \n",
"SIDE_CHANNEL_UUID = uuid.UUID(\"8bbfb62a-99b4-457c-879d-b78b69066b5e\")\n",
"ENV_PATH = \"../Build/Build-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel-EndReward/Aimbot-ParallelEnv\"\n",
"aimBotsideChannel = AimbotSideChannel(SIDE_CHANNEL_UUID)\n",
"env = Aimbot(envPath=ENV_PATH, workerID=123, basePort=999,side_channels=[aimBotsideChannel])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.distributions.normal import Normal\n",
"from torch.distributions.categorical import Categorical\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() and True else \"cpu\")\n",
"\n",
"def layer_init(layer, std=np.sqrt(2), bias_const=0.0):\n",
" torch.nn.init.orthogonal_(layer.weight, std)\n",
" torch.nn.init.constant_(layer.bias, bias_const)\n",
" return layer\n",
"\n",
"class PPOAgent(nn.Module):\n",
" def __init__(self, env: Aimbot,targetNum:int):\n",
" super(PPOAgent, self).__init__()\n",
" self.targetNum = targetNum\n",
" self.discrete_size = env.unity_discrete_size\n",
" self.discrete_shape = list(env.unity_discrete_branches)\n",
" self.continuous_size = env.unity_continuous_size\n",
"\n",
" self.network = nn.Sequential(\n",
" layer_init(nn.Linear(np.array(env.unity_observation_shape).prod(), 500)),\n",
" nn.ReLU(),\n",
" layer_init(nn.Linear(500, 300)),\n",
" nn.ReLU(),\n",
" )\n",
" self.actor_dis = nn.ModuleList([layer_init(nn.Linear(300, self.discrete_size), std=0.01) for i in range(targetNum)])\n",
" self.actor_mean = nn.ModuleList([layer_init(nn.Linear(300, self.continuous_size), std=0.01) for i in range(targetNum)])\n",
" self.actor_logstd = nn.ParameterList([nn.Parameter(torch.zeros(1, self.continuous_size)) for i in range(targetNum)])\n",
" self.critic = layer_init(nn.Linear(300, 1), std=1)\n",
"\n",
" def get_value(self, state: torch.Tensor):\n",
" return self.critic(self.network(state))\n",
"\n",
" def get_actions_value(self, state: torch.Tensor, actions=None):\n",
" hidden = self.network(state)\n",
" targets = torch.argmax(state[:,0:self.targetNum],dim=1)\n",
"\n",
" # discrete\n",
" # 递归targets的数量,既agent数来实现根据target不同来选用对应的输出网络计算输出\n",
" dis_logits = torch.stack([self.actor_dis[targets[i]](hidden[i]) for i in range(targets.size()[0])])\n",
" split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)\n",
" multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]\n",
" # continuous\n",
" actions_mean = torch.stack([self.actor_mean[targets[i]](hidden[i]) for i in range(targets.size()[0])]) # self.actor_mean(hidden)\n",
" # action_logstd = torch.stack([self.actor_logstd[targets[i]].expand_as(actions_mean) for i in range(targets.size()[0])]) # self.actor_logstd.expand_as(actions_mean)\n",
" # print(action_logstd)\n",
" action_std = torch.squeeze(torch.stack([torch.exp(self.actor_logstd[targets[i]]) for i in range(targets.size()[0])]),dim = -1) # torch.exp(action_logstd)\n",
" con_probs = Normal(actions_mean, action_std)\n",
"\n",
" if actions is None:\n",
" if True:\n",
" # select actions base on probability distribution model\n",
" disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])\n",
" conAct = con_probs.sample()\n",
" actions = torch.cat([disAct.T, conAct], dim=1)\n",
" else:\n",
" # select actions base on best probability distribution\n",
" disAct = torch.stack([torch.argmax(logit, dim=1) for logit in split_logits])\n",
" conAct = actions_mean\n",
" actions = torch.cat([disAct.T, conAct], dim=1)\n",
" else:\n",
" disAct = actions[:, 0 : env.unity_discrete_type].T\n",
" conAct = actions[:, env.unity_discrete_type :]\n",
" dis_log_prob = torch.stack(\n",
" [ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]\n",
" )\n",
" dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])\n",
" return (\n",
" actions,\n",
" dis_log_prob.sum(0),\n",
" dis_entropy.sum(0),\n",
" con_probs.log_prob(conAct).sum(1),\n",
" con_probs.entropy().sum(1),\n",
" self.critic(hidden),\n",
" )\n",
"agent = PPOAgent(env,4).to(device)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 1. , -10.343613 , 0. , -7.367299 ,\n",
" 0. , 0. , 30. , -10.343662 ,\n",
" 1. , -33.708736 , 1. , 1. ,\n",
" 1. , 1. , 2. , 1. ,\n",
" 1. , 1. , 2. , 2. ,\n",
" 2. , 1. , 1. , 1. ,\n",
" 33.270493 , 39.50663 , 49.146526 , 32.595673 ,\n",
" 30.21616 , 21.163797 , 46.9299 , 1.3264331 ,\n",
" 1.2435672 , 1.2541904 , 30.08522 , 30.041445 ,\n",
" 21.072094 , 0. ],\n",
" [ 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 30. , -5.5892515 ,\n",
" 1. , -29.907726 , 1. , 1. ,\n",
" 1. , 1. , 2. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 41.408752 , 47.830173 , 45.03225 , 31.905174 ,\n",
" 41.849663 , 41.849648 , 43.001434 , 45.0322 ,\n",
" 47.48242 , 40.00285 , 41.668346 , 41.607723 ,\n",
" 41.668335 , 0. ],\n",
" [ 1. , 2.9582403 , 0. , -4.699738 ,\n",
" 0. , 0. , 30. , -5.412487 ,\n",
" 1. , -32.79967 , 1. , 2. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 2. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 20.17488 , 49.507687 , 48.162056 , 45.98998 ,\n",
" 44.75835 , 31.08564 , 32.865173 , 24.676666 ,\n",
" 12.952409 , 39.69923 , 44.564423 , 44.49966 ,\n",
" 44.564495 , 0. ],\n",
" [ 2. , -0.20171738, 0. , -10.340863 ,\n",
" 0. , 0. , 30. , -22.987915 ,\n",
" 1. , -34.37514 , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 2. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 11.631058 , 13.872022 , 18.006863 , 27.457632 ,\n",
" 46.343067 , 46.343094 , 20.155125 , 49.867714 ,\n",
" 52.965984 , 56.775608 , 46.14223 , 46.075138 ,\n",
" 46.142246 , 0. ],\n",
" [ 2. , -14.687862 , 0. , -12.615574 ,\n",
" 0. , 0. , 30. , 15.125373 ,\n",
" 1. , -30.849268 , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 2. ,\n",
" 52.430542 , 48.912865 , 46.05145 , 43.974594 ,\n",
" 42.796673 , 26.467875 , 11.072432 , 7.190229 ,\n",
" 5.483198 , 4.5500183 , 42.611244 , 42.549267 ,\n",
" 18.856438 , 0. ],\n",
" [ 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 30. , -4.0314903 ,\n",
" 1. , -29.164669 , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 44.074184 , 46.9762 , 44.228096 , 42.2335 ,\n",
" 41.102253 , 41.102367 , 42.233757 , 44.22849 ,\n",
" 44.321827 , 37.335304 , 40.924183 , 40.86467 ,\n",
" 40.924236 , 0. ],\n",
" [ 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 30. , -18.603981 ,\n",
" 1. , -29.797592 , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 2. , 2. , 2. ,\n",
" 19.134174 , 22.76088 , 29.468704 , 42.88739 ,\n",
" 41.738823 , 41.739002 , 42.88781 , 44.913647 ,\n",
" 47.704174 , 51.135338 , 20.418388 , 12.470214 ,\n",
" 12.670923 , 0. ],\n",
" [ 0. , 0. , 0. , 0. ,\n",
" 0. , 0. , 30. , -19.07032 ,\n",
" 1. , -30.246218 , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 1. , 1. , 1. , 1. ,\n",
" 18.336487 , 21.81617 , 28.251017 , 42.977867 ,\n",
" 42.18994 , 42.19034 , 43.351707 , 45.399582 ,\n",
" 48.22037 , 51.68873 , 42.00719 , 41.94621 ,\n",
" 42.00739 , 0. ]], dtype=float32)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"state,_,_ = env.getSteps()\n",
"state"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"env.close()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"float"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"aa = torch.Tensor([[1,2,3],[2,2,3],[3,2,3],[4,2,3]]).to(\"cuda\")\n",
"type(torch.mean(aa).item())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.7 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "86e2db13b09bd6be22cb599ea60c1572b9ef36ebeaa27a4c8e961d6df315ac32"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,5 +0,0 @@
import numpy as np
aa = np.array([1,2,3,4,5,6,7,8,9,10])
print(aa)