diff --git a/Aimbot-PPO-Python/Pytorch/ppo.py b/Aimbot-PPO-Python/Pytorch/ppo.py index 1ef7d41..b2c6cbf 100644 --- a/Aimbot-PPO-Python/Pytorch/ppo.py +++ b/Aimbot-PPO-Python/Pytorch/ppo.py @@ -8,6 +8,7 @@ import torch.nn as nn import torch.optim as optim from AimbotEnv import Aimbot +from tqdm import tqdm from torch.distributions.normal import Normal from torch.distributions.categorical import Categorical from distutils.util import strtobool @@ -16,34 +17,34 @@ from torch.utils.tensorboard import SummaryWriter bestReward = 0 DEFAULT_SEED = 9331 -ENV_PATH = "../Build/Build-ParallelEnv-BigArea-6Enemy/Aimbot-ParallelEnv" +ENV_PATH = "../Build/Build-ParallelEnv-BigArea-6Enemy-EndBonus/Aimbot-ParallelEnv" WAND_ENTITY = "koha9" WORKER_ID = 1 BASE_PORT = 1000 +# max round steps per agent is 2500, 25 seconds -TOTAL_STEPS = 2000000 -STEP_NUM = 314 +TOTAL_STEPS = 4000000 +BATCH_SIZE = 512 +MAX_TRAINNING_DATASETS = 8000 DECISION_PERIOD = 2 LEARNING_RATE = 7e-4 GAMMA = 0.99 GAE_LAMBDA = 0.95 -MINIBATCH_NUM = 4 EPOCHS = 4 CLIP_COEF = 0.1 POLICY_COEF = 1.0 ENTROPY_COEF = 0.01 CRITIC_COEF = 0.5 -ANNEAL_LEARNING_RATE = True +ANNEAL_LEARNING_RATE = False CLIP_VLOSS = True NORM_ADV = True -TRAIN = True +TRAIN = False WANDB_TACK = False LOAD_DIR = None -# LOAD_DIR = "../PPO-Model/SmallArea-256-128-hybrid-2nd-trainning.pt" - +LOAD_DIR = "../PPO-Model/bigArea-4.pt" def parse_args(): # fmt: off @@ -67,10 +68,10 @@ def parse_args(): # model parameters parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True, help="Train Model or not") - parser.add_argument("--stepNum", type=int, default=STEP_NUM, - help="the number of steps to run in each environment per policy rollout") - parser.add_argument("--minibatchesNum", type=int, default=MINIBATCH_NUM, - help="the number of mini-batches") + parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS, + help="training dataset size,start training while dataset collect enough data") + parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE, + help="nimi batch size") parser.add_argument("--epochs", type=int, default=EPOCHS, help="the K epochs to update the policy") parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True, @@ -179,6 +180,40 @@ class PPOAgent(nn.Module): ) +def GAE(agent, args, rewards, dones, values, next_obs, next_done): + # GAE + with torch.no_grad(): + next_value = agent.get_value(next_obs).reshape(1, -1) + data_size = rewards.size()[0] + if args.gae: + advantages = torch.zeros_like(rewards).to(device) + lastgaelam = 0 + for t in reversed(range(data_size)): + if t == data_size - 1: + nextnonterminal = 1.0 - next_done + nextvalues = next_value + else: + nextnonterminal = 1.0 - dones[t + 1] + nextvalues = values[t + 1] + delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] + advantages[t] = lastgaelam = ( + delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam + ) + returns = advantages + values + else: + returns = torch.zeros_like(rewards).to(device) + for t in reversed(range(data_size)): + if t == data_size - 1: + nextnonterminal = 1.0 - next_done + next_return = next_value + else: + nextnonterminal = 1.0 - dones[t + 1] + next_return = returns[t + 1] + returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return + advantages = returns - values + return advantages, returns + + if __name__ == "__main__": args = parse_args() random.seed(args.seed) @@ -199,11 +234,11 @@ if __name__ == "__main__": optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5) # Tensorboard and WandB Recorder - game_name = "Aimbot" + game_name = "Aimbot-BigArea-6Enemy-EndBonus" run_name = f"{game_name}_{args.seed}_{int(time.time())}" if args.wandb_track: wandb.init( - project=run_name, + project=game_name, entity=args.wandb_entity, sync_tensorboard=True, config=vars(args), @@ -219,94 +254,165 @@ if __name__ == "__main__": % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), ) - # Memory Record - obs = torch.zeros((args.stepNum, env.unity_agent_num) + env.unity_observation_shape).to(device) - actions = torch.zeros((args.stepNum, env.unity_agent_num) + (env.unity_action_size,)).to(device) - dis_logprobs = torch.zeros((args.stepNum, env.unity_agent_num)).to(device) - con_logprobs = torch.zeros((args.stepNum, env.unity_agent_num)).to(device) - rewards = torch.zeros((args.stepNum, env.unity_agent_num)).to(device) - dones = torch.zeros((args.stepNum, env.unity_agent_num)).to(device) - values = torch.zeros((args.stepNum, env.unity_agent_num)).to(device) + # Trajectory Buffer + ob_bf = [[] for i in range(env.unity_agent_num)] + act_bf = [[] for i in range(env.unity_agent_num)] + dis_logprobs_bf = [[] for i in range(env.unity_agent_num)] + con_logprobs_bf = [[] for i in range(env.unity_agent_num)] + rewards_bf = [[] for i in range(env.unity_agent_num)] + dones_bf = [[] for i in range(env.unity_agent_num)] + values_bf = [[] for i in range(env.unity_agent_num)] # TRY NOT TO MODIFY: start the game - args.batch_size = int(env.unity_agent_num * args.stepNum) - args.minibatch_size = int(args.batch_size // args.minibatchesNum) - total_update_step = args.total_timesteps // args.batch_size + total_update_step = args.total_timesteps // args.datasetSize global_step = 0 start_time = time.time() - next_obs, _, _ = env.reset() - next_obs = torch.Tensor(next_obs).to(device) - next_done = torch.zeros(env.unity_agent_num).to(device) + state, _, done = env.reset() + # state = torch.Tensor(next_obs).to(device) + # next_done = torch.zeros(env.unity_agent_num).to(device) for total_steps in range(total_update_step): # discunt learning rate, while step == total_update_step lr will be 0 + print("new episode") if args.annealLR: frac = 1.0 - (total_steps - 1.0) / total_update_step lrnow = frac * args.lr optimizer.param_groups[0]["lr"] = lrnow + # initialize empty training datasets + obs = torch.tensor([]).to(device) # (n,env.unity_observation_size) + actions = torch.tensor([]).to(device) # (n,env.unity_action_size) + dis_logprobs = torch.tensor([]).to(device) # (n,1) + con_logprobs = torch.tensor([]).to(device) # (n,1) + rewards = torch.tensor([]).to(device) # (n,1) + values = torch.tensor([]).to(device) # (n,1) + advantages = torch.tensor([]).to(device) # (n,1) + returns = torch.tensor([]).to(device) # (n,1) + # MAIN LOOP: run agent in environment - for i in range(args.stepNum * args.decision_period): + i = 0 + training = False + while True: if i % args.decision_period == 0: step = round(i / args.decision_period) # Choose action by agent global_step += 1 * env.unity_agent_num - obs[step] = next_obs - dones[step] = next_done with torch.no_grad(): # predict actions action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value( - next_obs + torch.Tensor(state).to(device) ) value = value.flatten() - next_obs, reward, done = env.step(action.cpu().numpy()) + + # variable from GPU to CPU + action_cpu = action.cpu().numpy() + dis_logprob_cpu = dis_logprob.cpu().numpy() + con_logprob_cpu = con_logprob.cpu().numpy() + value_cpu = value.cpu().numpy() + # Environment step + next_state, reward, next_done = env.step(action_cpu) # save memories - actions[step] = action - dis_logprobs[step] = dis_logprob - con_logprobs[step] = con_logprob - values[step] = value - rewards[step] = torch.tensor(reward).to(device).view(-1) - next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to( - device - ) + for i in range(env.unity_agent_num): + # save memories to buffers + ob_bf[i].append(state[i]) + act_bf[i].append(action_cpu[i]) + dis_logprobs_bf[i].append(dis_logprob_cpu[i]) + con_logprobs_bf[i].append(con_logprob_cpu[i]) + rewards_bf[i].append(reward[i]) + dones_bf[i].append(done[i]) + values_bf[i].append(value_cpu[i]) + if next_done[i] == True: + # finished a round, send finished memories to training datasets + # compute advantage and discounted reward + adv, rt = GAE( + agent, + args, + torch.tensor(rewards_bf[i]).to(device), + torch.Tensor(dones_bf[i]).to(device), + torch.tensor(values_bf[i]).to(device), + torch.tensor(next_state[i]).to(device), + torch.Tensor([next_done[i]]).to(device), + ) + # send memories to training datasets + obs = torch.cat((obs, torch.tensor(ob_bf[i]).to(device)), 0) + actions = torch.cat((actions, torch.tensor(act_bf[i]).to(device)), 0) + dis_logprobs = torch.cat( + (dis_logprobs, torch.tensor(dis_logprobs_bf[i]).to(device)), 0 + ) + con_logprobs = torch.cat( + (con_logprobs, torch.tensor(con_logprobs_bf[i]).to(device)), 0 + ) + rewards = torch.cat((rewards, torch.tensor(rewards_bf[i]).to(device)), 0) + values = torch.cat((values, torch.tensor(values_bf[i]).to(device)), 0) + advantages = torch.cat((advantages, adv), 0) + returns = torch.cat((returns, rt), 0) + + # clear buffers + ob_bf[i] = [] + act_bf[i] = [] + dis_logprobs_bf[i] = [] + con_logprobs_bf[i] = [] + rewards_bf[i] = [] + dones_bf[i] = [] + values_bf[i] = [] + print(f"train dataset:{obs.size()[0]}/{args.datasetSize}") + + if obs.size()[0] >= args.datasetSize: + # start train NN + break + state, done = next_state, next_done else: # skip this step use last predict action - next_obs, reward, done = env.step(action.cpu().numpy()) - next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to( - device - ) + next_obs, reward, done = env.step(action_cpu) + # save memories + for i in range(env.unity_agent_num): + if next_done[i] == True: + # save last memories to buffers + ob_bf[i].append(state[i]) + act_bf[i].append(action_cpu[i]) + dis_logprobs_bf[i].append(dis_logprob_cpu[i]) + con_logprobs_bf[i].append(con_logprob_cpu[i]) + rewards_bf[i].append(reward[i]) + dones_bf[i].append(done[i]) + values_bf[i].append(value_cpu[i]) + # finished a round, send finished memories to training datasets + # compute advantage and discounted reward + adv, rt = GAE( + agent, + args, + torch.tensor(rewards_bf[i]).to(device), + torch.Tensor(dones_bf[i]).to(device), + torch.tensor(values_bf[i]).to(device), + torch.tensor(next_state[i]).to(device), + torch.Tensor([next_done[i]]).to(device), + ) + # send memories to training datasets + obs = torch.cat((obs, torch.tensor(ob_bf[i]).to(device)), 0) + actions = torch.cat((actions, torch.tensor(act_bf[i]).to(device)), 0) + dis_logprobs = torch.cat( + (dis_logprobs, torch.tensor(dis_logprobs_bf[i]).to(device)), 0 + ) + con_logprobs = torch.cat( + (con_logprobs, torch.tensor(con_logprobs_bf[i]).to(device)), 0 + ) + rewards = torch.cat((rewards, torch.tensor(rewards_bf[i]).to(device)), 0) + values = torch.cat((values, torch.tensor(values_bf[i]).to(device)), 0) + advantages = torch.cat((advantages, adv), 0) + returns = torch.cat((returns, rt), 0) - # GAE - with torch.no_grad(): - next_value = agent.get_value(next_obs).reshape(1, -1) - if args.gae: - advantages = torch.zeros_like(rewards).to(device) - lastgaelam = 0 - for t in reversed(range(args.stepNum)): - if t == args.stepNum - 1: - nextnonterminal = 1.0 - next_done - nextvalues = next_value - else: - nextnonterminal = 1.0 - dones[t + 1] - nextvalues = values[t + 1] - delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] - advantages[t] = lastgaelam = ( - delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam - ) - returns = advantages + values - else: - returns = torch.zeros_like(rewards).to(device) - for t in reversed(range(args.stepNum)): - if t == args.stepNum - 1: - nextnonterminal = 1.0 - next_done - next_return = next_value - else: - nextnonterminal = 1.0 - dones[t + 1] - next_return = returns[t + 1] - returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return - advantages = returns - values + # clear buffers + ob_bf[i] = [] + act_bf[i] = [] + dis_logprobs_bf[i] = [] + con_logprobs_bf[i] = [] + rewards_bf[i] = [] + dones_bf[i] = [] + values_bf[i] = [] + print(f"train dataset:{obs.size()[0]}/{args.datasetSize}") + state, done = next_state, next_done + i += 1 if args.train: # flatten the batch @@ -317,15 +423,15 @@ if __name__ == "__main__": b_advantages = advantages.reshape(-1) b_returns = returns.reshape(-1) b_values = values.reshape(-1) - + b_size = b_obs.size()[0] # Optimizing the policy and value network - b_inds = np.arange(args.batch_size) + b_inds = np.arange(b_size) # clipfracs = [] for epoch in range(args.epochs): # shuffle all datasets np.random.shuffle(b_inds) - for start in range(0, args.batch_size, args.minibatch_size): - end = start + args.minibatch_size + for start in range(0, b_size, args.minibatchSize): + end = start + args.minibatchSize mb_inds = b_inds[start:end] mb_advantages = b_advantages[mb_inds] diff --git a/Aimbot-PPO-Python/Pytorch/testarea.ipynb b/Aimbot-PPO-Python/Pytorch/testarea.ipynb index dd9fd35..9fbc548 100644 --- a/Aimbot-PPO-Python/Pytorch/testarea.ipynb +++ b/Aimbot-PPO-Python/Pytorch/testarea.ipynb @@ -434,41 +434,119 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import numpy as np\n", + "\n", + "x = torch.randn(2, 3).to(\"cuda\")\n", + "print(x)\n", + "print(torch.cat((x, x, x), 0))\n", + "print(torch.cat((x, x, x), 1))\n", + "\n", + "aa = torch.empty(0).to(\"cuda\")\n", + "torch.cat([aa,x])\n", + "bb = [[]]*2\n", + "print(bb)\n", + "bb.append(x.to(\"cpu\").tolist())\n", + "bb.append(x.to(\"cpu\").tolist())\n", + "print(bb)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "x : torch.Size([2, 3, 4])\n", - "x : torch.Size([6, 2, 3, 4])\n", - "x : torch.Size([6, 2, 3, 4])\n" + "tensor([[-1.1090, 0.4686, 0.6883],\n", + " [-0.1862, -0.3943, -0.0202],\n", + " [ 0.1436, -0.9444, -1.2079],\n", + " [-2.9434, -2.5989, -0.6653],\n", + " [ 0.4668, 0.8548, -0.4641],\n", + " [-0.3956, -0.2832, -0.1889],\n", + " [-0.2801, -0.2092, 1.7254],\n", + " [ 2.7938, -0.7742, 0.7053]], device='cuda:0')\n", + "(8, 0)\n", + "---\n", + "[[array([-1.1090169, 0.4685607, 0.6883437], dtype=float32)], [array([-0.1861974 , -0.39429024, -0.02016036], dtype=float32)], [array([ 0.14360362, -0.9443668 , -1.2079065 ], dtype=float32)], [array([-2.9433894 , -2.598913 , -0.66532046], dtype=float32)], [array([ 0.46684313, 0.8547877 , -0.46408093], dtype=float32)], [array([-0.39563984, -0.2831819 , -0.18891 ], dtype=float32)], [array([-0.28008553, -0.20918302, 1.7253567 ], dtype=float32)], [array([ 2.7938051, -0.7742478, 0.705279 ], dtype=float32)]]\n", + "[[array([-1.1090169, 0.4685607, 0.6883437], dtype=float32)], [], [array([ 0.14360362, -0.9443668 , -1.2079065 ], dtype=float32)], [array([-2.9433894 , -2.598913 , -0.66532046], dtype=float32)], [array([ 0.46684313, 0.8547877 , -0.46408093], dtype=float32)], [array([-0.39563984, -0.2831819 , -0.18891 ], dtype=float32)], [array([-0.28008553, -0.20918302, 1.7253567 ], dtype=float32)], [array([ 2.7938051, -0.7742478, 0.705279 ], dtype=float32)]]\n", + "---\n", + "[array([-1.1090169, 0.4685607, 0.6883437], dtype=float32), array([-1.1090169, 0.4685607, 0.6883437], dtype=float32)]\n", + "vvv tensor([[-1.1090, 0.4686, 0.6883],\n", + " [-1.1090, 0.4686, 0.6883]], device='cuda:0')\n", + "tensor([[-1.1090, 0.4686, 0.6883],\n", + " [-1.1090, 0.4686, 0.6883]], device='cuda:0')\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "import torch\n", + "\n", + "agent_num = 8\n", + "ob_buffer = [[]for i in range(agent_num)]\n", + "obs = torch.randn(8, 3).to(\"cuda\")\n", + "print(obs)\n", + "print(np.shape(np.array(ob_buffer)))\n", + "print('---')\n", + "obs_cpu = obs.to(\"cpu\").numpy()\n", + "for i in range(agent_num):\n", + " ob_buffer[i].append(obs_cpu[i])\n", + "print(ob_buffer)\n", + "ob_buffer[1] = []\n", + "print(ob_buffer)\n", + "print('---')\n", + "for i in range(agent_num):\n", + " ob_buffer[i].append(obs_cpu[i])\n", + "print(ob_buffer[0])\n", + "vvv = torch.tensor(ob_buffer[0]).to(\"cuda\")\n", + "print(\"vvv\",vvv)\n", + "empt = torch.tensor([]).to(\"cuda\")\n", + "vvvv = torch.cat((empt,vvv),0)\n", + "print(vvvv)\n", + "vvvv.size()[0]>0" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "start 0\n", + "end 3\n", + "start 3\n", + "end 6\n", + "start 6\n", + "end 9\n", + "start 9\n", + "end 12\n" ] } ], "source": [ - "import torch\n", - "#1\n", - "x = torch.randn(2, 1, 1)#为1可以扩展为3和4\n", - "x = x.expand(2, 3, 4)\n", - "print('x :', x.size())\n", - "\n", - "#2\n", - "#扩展一个新的维度必须在最前面,否则会报错\n", - "#x = x.expand(2, 3, 4, 6)\n", - "\n", - "x = x.expand(6, 2, 3, 4)\n", - "print('x :', x.size())\n", - "\n", - "#3\n", - "#某一个维度为-1表示不改变该维度的大小\n", - "x = x.expand(6, -1, -1, -1)\n", - "print('x :', x.size())\n", - "\n", - "x : torch.Size([2, 3, 4])\n", - "x : torch.Size([6, 2, 3, 4])\n", - "x : torch.Size([6, 2, 3, 4])" + "for i in range(0,10,3):\n", + " print(\"start\",i)\n", + " print('end',i+3)" ] } ],