Side Channel Added

add side Channel to save target win ratio.
This commit is contained in:
Koha9 2022-11-30 07:01:05 +09:00
parent a0895c7449
commit 1e974ada2a
2 changed files with 67 additions and 3 deletions

View File

@ -12,12 +12,13 @@ class Aimbot(gym.Env):
envPath: str,
workerID: int = 1,
basePort: int = 100,
side_channels: list = []
):
super(Aimbot, self).__init__()
self.env = UnityEnvironment(
file_name=envPath,
seed=1,
side_channels=[],
side_channels=side_channels,
worker_id=workerID,
base_port=basePort,
)

View File

@ -3,6 +3,7 @@ import wandb
import time
import numpy as np
import random
import uuid
import torch
import torch.nn as nn
import torch.optim as optim
@ -12,15 +13,24 @@ from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from distutils.util import strtobool
from torch.utils.tensorboard import SummaryWriter
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.side_channel import (
SideChannel,
IncomingMessage,
OutgoingMessage,
)
from typing import List
bestReward = 0
DEFAULT_SEED = 9331
ENV_PATH = "../Build/Build-ParallelEnv-BigArea-6Enemy/Aimbot-ParallelEnv"
ENV_PATH = "../Build/Build-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel/Aimbot-ParallelEnv"
SIDE_CHANNEL_UUID = uuid.UUID("8bbfb62a-99b4-457c-879d-b78b69066b5e")
WAND_ENTITY = "koha9"
WORKER_ID = 1
BASE_PORT = 1000
# !!!check every parameters before run!!!
TOTAL_STEPS = 2000000
STEP_NUM = 314
@ -44,6 +54,10 @@ WANDB_TACK = False
LOAD_DIR = None
# LOAD_DIR = "../PPO-Model/SmallArea-256-128-hybrid-2nd-trainning.pt"
# public data
TotalRounds = {"Go":0,"Attack":0,"Free":0}
WinRounds = {"Go":0,"Attack":0,"Free":0}
def parse_args():
# fmt: off
@ -178,6 +192,51 @@ class PPOAgent(nn.Module):
self.critic(hidden),
)
class AimbotSideChannel(SideChannel):
def __init__(self, channel_id: uuid.UUID) -> None:
super().__init__(channel_id)
def on_message_received(self, msg: IncomingMessage) -> None:
"""
Note: We must implement this method of the SideChannel interface to
receive messages from Unity
"""
thisMessage = msg.read_string()
print(thisMessage)
thisResult = thisMessage.split("|")
if(thisResult[0] == "result"):
TotalRounds[thisResult[1]]+=1
if(thisResult[2] == "Win"):
WinRounds[thisResult[1]]+=1
print(TotalRounds)
print(WinRounds)
elif(thisResult[0] == "Error"):
print(thisMessage)
# 发送函数
def send_string(self, data: str) -> None:
"""发送一个字符串给C#"""
msg = OutgoingMessage()
msg.write_string(data)
super().queue_message_to_send(msg)
def send_bool(self, data: bool) -> None:
msg = OutgoingMessage()
msg.write_bool(data)
super().queue_message_to_send(msg)
def send_int(self, data: int) -> None:
msg = OutgoingMessage()
msg.write_int32(data)
super().queue_message_to_send(msg)
def send_float(self, data: float) -> None:
msg = OutgoingMessage()
msg.write_float32(data)
super().queue_message_to_send(msg)
def send_float_list(self, data: List[float]) -> None:
msg = OutgoingMessage()
msg.write_float32_list(data)
super().queue_message_to_send(msg)
if __name__ == "__main__":
args = parse_args()
@ -188,7 +247,8 @@ if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# Initialize environment anget optimizer
env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport)
aimBotsideChannel = AimbotSideChannel(SIDE_CHANNEL_UUID);
env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport,side_channels=[aimBotsideChannel])
if args.load_dir is None:
agent = PPOAgent(env).to(device)
else:
@ -424,6 +484,9 @@ if __name__ == "__main__":
"charts/SPS", int(global_step / (time.time() - start_time)), global_step
)
writer.add_scalar("charts/Reward", rewardsMean, global_step)
writer.add_scalar("charts/GoWinRatio", WinRounds["Go"]/TotalRounds["Go"] if TotalRounds["Go"] != 0 else 0, global_step)
writer.add_scalar("charts/AttackWinRatio", WinRounds["Attack"]/TotalRounds["Attack"] if TotalRounds["Attack"] != 0 else 0, global_step)
writer.add_scalar("charts/FreeWinRatio", WinRounds["Free"]/TotalRounds["Free"] if TotalRounds["Free"] != 0 else 0, global_step)
if rewardsMean > bestReward:
bestReward = rewardsMean
saveDir = "../PPO-Model/bigArea-384-128-hybrid-" + str(rewardsMean) + ".pt"