Change Param based on a Paper

Change Param based on a Paper, and it work!
This commit is contained in:
Koha9 2022-12-17 09:46:51 +09:00
parent 3116831ae6
commit 0e0d98d8b1
2 changed files with 77 additions and 66 deletions

View File

@ -38,27 +38,27 @@ BASE_PORT = 1000
TOTAL_STEPS = 3150000
BATCH_SIZE = 1024
MAX_TRAINNING_DATASETS = 6000
DECISION_PERIOD = 2
FREEZE_HEAD_NETWORK = False
LEARNING_RATE = 1e-3
DECISION_PERIOD = 1
LEARNING_RATE = 5e-4
GAMMA = 0.99
GAE_LAMBDA = 0.9
EPOCHS = 2
CLIP_COEF = 0.1
GAE_LAMBDA = 0.95
EPOCHS = 3
CLIP_COEF = 0.11
LOSS_COEF = [1.0, 1.0, 1.0, 1.0] # free go attack defence
POLICY_COEF = [1.0, 1.0, 1.0, 1.0]
ENTROPY_COEF = [1.0, 1.0, 1.0, 1.0]
ENTROPY_COEF = [0.1, 0.1, 0.1, 0.1]
CRITIC_COEF = [0.5, 0.5, 0.5, 0.5]
TARGET_LEARNING_RATE = 1e-6
FREEZE_VIEW_NETWORK = False
ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = True
TRAIN = True
WANDB_TACK = True
WANDB_TACK = False
LOAD_DIR = None
#LOAD_DIR = "../PPO-Model/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670634636-freeonly-14/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670634636_-0.35597783.pt"
# LOAD_DIR = "../PPO-Model/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670986948-freeonly-20/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670986948_0.7949778.pt"
# public data
class Targets(Enum):
@ -67,11 +67,12 @@ class Targets(Enum):
Attack = 2
Defence = 3
Num = 4
TARGET_STATE_SIZE = 7 # 6+1
TARGET_STATE_SIZE = 6
INAREA_STATE_SIZE = 1
TIME_STATE_SIZE = 1
GUN_STATE_SIZE = 1
MY_STATE_SIZE = 4
TOTAL_T_STATE_SIZE = TARGET_STATE_SIZE+TIME_STATE_SIZE+GUN_STATE_SIZE+MY_STATE_SIZE
TOTAL_T_SIZE = TARGET_STATE_SIZE+INAREA_STATE_SIZE+TIME_STATE_SIZE+GUN_STATE_SIZE+MY_STATE_SIZE
BASE_WINREWARD = 999
BASE_LOSEREWARD = -999
TARGETNUM= 4
@ -107,8 +108,8 @@ def parse_args():
# model parameters
parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True,
help="Train Model or not")
parser.add_argument("--freeze-headnet", type=lambda x: bool(strtobool(x)), default=FREEZE_HEAD_NETWORK, nargs="?", const=True,
help="freeze head network or not")
parser.add_argument("--freeze-viewnet", type=lambda x: bool(strtobool(x)), default=FREEZE_VIEW_NETWORK, nargs="?", const=True,
help="freeze view network or not")
parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS,
help="training dataset size,start training while dataset collect enough data")
parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE,
@ -166,70 +167,73 @@ class PPOAgent(nn.Module):
def __init__(self, env: Aimbot,targetNum:int):
super(PPOAgent, self).__init__()
self.targetNum = targetNum
self.stateSize = env.unity_observation_shape[0]
self.agentNum = env.unity_agent_num
self.targetSize = TARGET_STATE_SIZE
self.timeSize = TIME_STATE_SIZE
self.gunSize = GUN_STATE_SIZE
self.myStateSize = MY_STATE_SIZE
self.totalTSize = TOTAL_T_STATE_SIZE
self.targetInputSize = TOTAL_T_STATE_SIZE - TIME_STATE_SIZE - 1 # all target except time and target state
self.totalRaySize = env.unity_observation_shape[0] - TOTAL_T_STATE_SIZE
self.criticInputSize = env.unity_observation_shape[0] - TIME_STATE_SIZE - 1 # all except time and target state
self.raySize = env.unity_observation_shape[0] - TOTAL_T_SIZE
self.nonRaySize = TOTAL_T_SIZE
self.head_input_size = env.unity_observation_shape[0] - self.targetSize-self.timeSize-self.gunSize# except target state input
self.discrete_size = env.unity_discrete_size
self.discrete_shape = list(env.unity_discrete_branches)
self.continuous_size = env.unity_continuous_size
self.viewNetwork = nn.Sequential(
layer_init(nn.Linear(self.totalRaySize, 200)),
nn.Tanh(),
layer_init(nn.Linear(self.raySize, 200)),
nn.Tanh()
)
self.targetNetworks = nn.ModuleList([nn.Sequential(
layer_init(nn.Linear(self.targetInputSize,128)),
layer_init(nn.Linear(self.nonRaySize, 100)),
nn.Tanh()
)for i in range(targetNum)])
self.middleNetworks = nn.ModuleList([nn.Sequential(
layer_init(nn.Linear(328,256)),
nn.Softplus()
layer_init(nn.Linear(300,200)),
nn.Tanh()
)for i in range(targetNum)])
self.actor_dis = nn.ModuleList([layer_init(nn.Linear(256, self.discrete_size), std=0.5) for i in range(targetNum)])
self.actor_mean = nn.ModuleList([layer_init(nn.Linear(256, self.continuous_size), std=0) for i in range(targetNum)])
self.actor_dis = nn.ModuleList([layer_init(nn.Linear(200, self.discrete_size), std=0.5) for i in range(targetNum)])
self.actor_mean = nn.ModuleList([layer_init(nn.Linear(200, self.continuous_size), std=0.5) for i in range(targetNum)])
# self.actor_logstd = nn.ModuleList([layer_init(nn.Linear(256, self.continuous_size), std=1) for i in range(targetNum)])
self.actor_logstd = nn.ParameterList([nn.Parameter(torch.zeros(1, self.continuous_size)) for i in range(targetNum)])
self.critic = nn.ModuleList([nn.Sequential(
layer_init(nn.Linear(self.criticInputSize, 512)),
nn.Tanh(),
layer_init(nn.Linear(512, 256)),
nn.Tanh(),
layer_init(nn.Linear(256, 1), std=0.5))for i in range(targetNum)])
self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))
self.critic = nn.ModuleList([layer_init(nn.Linear(200, 1), std=1)for i in range(targetNum)])
def get_value(self, state: torch.Tensor):
targets = state[:,0].to(torch.int32) # int
headInput = torch.cat([state[:,1:self.targetSize],state[:,self.targetSize+self.timeSize:]],dim=1) # except target state
return torch.stack([self.critic[targets[i]](headInput[i])for i in range(targets.size()[0])])
target = state[:,0].to(torch.int32) # int
thisStateNum = target.size()[0]
viewInput = state[:,-self.raySize:] # all ray input
targetInput = state[:,:self.nonRaySize]
viewLayer = self.viewNetwork(viewInput)
targetLayer = torch.stack([self.targetNetworks[target[i]](targetInput[i]) for i in range(thisStateNum)])
middleInput = torch.cat([viewLayer,targetLayer],dim = 1)
middleLayer = torch.stack([self.middleNetworks[target[i]](middleInput[i]) for i in range(thisStateNum)])
criticV = torch.stack([self.critic[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.critic
return criticV
def get_actions_value(self, state: torch.Tensor, actions=None):
targets = state[:,0].to(torch.int32) # int
viewInput = state[:,-self.totalRaySize:] # all ray input
targetInput = torch.cat([state[:,1:self.targetSize],state[:,self.targetSize+self.timeSize:self.totalTSize]],dim=1) # all target except time and target intselt
target = state[:,0].to(torch.int32) # int
thisStateNum = target.size()[0]
viewInput = state[:,-self.raySize:] # all ray input
targetInput = state[:,:self.nonRaySize]
viewLayer = self.viewNetwork(viewInput)
targetLayer = torch.stack([self.targetNetworks[targets[i]](targetInput[i]) for i in range(targets.size()[0])])
targetLayer = torch.stack([self.targetNetworks[target[i]](targetInput[i]) for i in range(thisStateNum)])
middleInput = torch.cat([viewLayer,targetLayer],dim = 1)
middleLayer = torch.stack([self.middleNetworks[targets[i]](middleInput[i]) for i in range(targets.size()[0])])
middleLayer = torch.stack([self.middleNetworks[target[i]](middleInput[i]) for i in range(thisStateNum)])
# discrete
# 递归targets的数量,既agent数来实现根据target不同来选用对应的输出网络计算输出
dis_logits = torch.stack([self.actor_dis[targets[i]](middleLayer[i]) for i in range(targets.size()[0])])
dis_logits = torch.stack([self.actor_dis[target[i]](middleLayer[i]) for i in range(thisStateNum)])
split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
# continuous
actions_mean = torch.stack([self.actor_mean[targets[i]](middleLayer[i]) for i in range(targets.size()[0])]) # self.actor_mean(hidden)
# action_logstd = torch.stack([self.actor_logstd[targets[i]].expand_as(actions_mean) for i in range(targets.size()[0])]) # self.actor_logstd.expand_as(actions_mean)
actions_mean = torch.stack([self.actor_mean[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.actor_mean(hidden)
action_logstd = self.actor_logstd.expand_as(actions_mean) # self.actor_logstd.expand_as(actions_mean)
# print(action_logstd)
action_std = torch.squeeze(torch.stack([torch.exp(self.actor_logstd[targets[i]]) for i in range(targets.size()[0])]),dim = -1) # torch.exp(action_logstd)
action_std = torch.clamp(action_std,1e-10)
action_std = torch.exp(action_logstd) # torch.exp(action_logstd)
con_probs = Normal(actions_mean, action_std)
# critic
criticV = self.get_value(state)
criticV = torch.stack([self.critic[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.critic
if actions is None:
if args.train:
@ -369,11 +373,11 @@ if __name__ == "__main__":
else:
agent = torch.load(args.load_dir)
# freeze
if args.freeze_headnet:
# freeze the head network
if args.freeze_viewnet:
# freeze the view network
for p in agent.viewNetwork.parameters():
p.requires_grad = False
print("HEAD NETWORK FREEZED")
print("VIEW NETWORK FREEZED")
print("Load Agent", args.load_dir)
print(agent.eval())
@ -489,7 +493,7 @@ if __name__ == "__main__":
thisRewardsTensor,
torch.Tensor(dones_bf[i]).to(device),
torch.tensor(values_bf[i]).to(device),
torch.Tensor(next_state[i]).to(device).unsqueeze(dim = 0),
torch.tensor(next_state[i]).to(device).unsqueeze(0),
torch.Tensor([next_done[i]]).to(device),
)
# send memories to training datasets
@ -522,7 +526,7 @@ if __name__ == "__main__":
trainQueue.append(i)
if(len(trainQueue)>0):
break
# state, done = next_state, next_done
state, done = next_state, next_done
else:
step += 1
# skip this step use last predict action
@ -625,11 +629,9 @@ if __name__ == "__main__":
# discrete ratio
dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
dis_ratio = dis_logratio.exp()
# dis_ratio = (new_dis_logprob / (b_dis_logprobs[mb_inds]+1e-8)).mean()
# continuous ratio
con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
con_ratio = con_logratio.exp()
# con_ratio = (new_con_logprob / (b_con_logprobs[mb_inds]+1e-8)).mean()
"""
# early stop
@ -673,10 +675,22 @@ if __name__ == "__main__":
loss = (
dis_pg_loss * POLICY_COEF[thisT]
+ con_pg_loss * POLICY_COEF[thisT]
- entropy_loss * ENTROPY_COEF[thisT]
+ entropy_loss * ENTROPY_COEF[thisT]
+ v_loss * CRITIC_COEF[thisT]
)*LOSS_COEF[thisT]
if(torch.isnan(loss).any()):
print("LOSS Include NAN!!!")
if(torch.isnan(dis_pg_loss.any())):
print("dis_pg_loss include nan")
if(torch.isnan(con_pg_loss.any())):
print("con_pg_loss include nan")
if(torch.isnan(entropy_loss.any())):
print("entropy_loss include nan")
if(torch.isnan(v_loss.any())):
print("v_loss include nan")
raise
optimizer.zero_grad()
loss.backward()
# Clips gradient norm of an iterable of parameters.

View File

@ -833,18 +833,15 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "new(): data must be a sequence (got bool)",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_42068\\1624049819.py\u001b[0m in \u001b[0;36m<cell line: 5>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdistributions\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnormal\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mNormal\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 5\u001b[1;33m \u001b[0maaa\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTensor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mto\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'cuda'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0munsqueeze\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 6\u001b[0m \u001b[0maaa\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mTypeError\u001b[0m: new(): data must be a sequence (got bool)"
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([False, True, False], device='cuda:0')\n",
"tensor(True, device='cuda:0')\n"
]
}
],
@ -853,8 +850,8 @@
"import numpy as np\n",
"from torch.distributions.normal import Normal\n",
"\n",
"aaa = torch.Tensor(True).to('cuda').unsqueeze(0)\n",
"aaa"
"print(torch.isnan(torch.tensor([1,float('nan'),2]).to(\"cuda\")))\n",
"print(torch.isnan(torch.tensor([1,float('nan'),2]).to(\"cuda\")).any())"
]
}
],