Aimbot-PPO/Aimbot-PPO-Python/Tensorflow/env.ipynb

161 lines
3.1 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import env"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"31\n",
"5\n",
"3\n"
]
}
],
"source": [
"a=1"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"包含None\n",
"[123 None]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"def qa(aa = None):\n",
" try:\n",
" isaanone = aa.any() == None\n",
" if aa.all() == None:\n",
" print(\"包含None\")\n",
" except:\n",
" isaanone =True\n",
" if isaanone:\n",
" print('none')\n",
" else:\n",
" print(aa)\n",
"\n",
"qa(np.array([123,None]))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[[1 1 1 1 1]\n",
" [1 2 1 1 1]]\n",
"\n",
" [[2 1 3 4 5]\n",
" [2 2 3 4 5]]\n",
"\n",
" [[3 1 3 4 5]\n",
" [3 2 3 4 5]]]\n",
"-\n",
"tf.Tensor(\n",
"[[1 1 1 1 1]\n",
" [2 1 3 4 5]\n",
" [3 1 3 4 5]], shape=(3, 5), dtype=int32)\n",
"-\n",
"tf.Tensor(\n",
"[[1 2 1 1 1]\n",
" [2 2 3 4 5]\n",
" [3 2 3 4 5]], shape=(3, 5), dtype=int32)\n"
]
}
],
"source": [
"import numpy as np\n",
"import tensorflow as tf\n",
"\n",
"aa = np.array([[[1,1,1,1,1],[1,2,1,1,1],[1,3,1,1,1]],\n",
" [[2,1,3,4,5],[2,2,3,4,5],[2,3,3,4,5]],\n",
" [[3,1,3,4,5],[3,2,3,4,5],[3,3,3,4,5]]])\n",
"tt = tf.constant(aa)\n",
"bb = np.array([6,3,6,3,2,3])\n",
"\n",
"print(aa[:,0:2])\n",
"aa[:,2:]\n",
"\n",
"for asd in tf.transpose(aa[:,0:2],perm=[1,0,2]):\n",
" print('-')\n",
" print(asd)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<tf.Tensor: shape=(), dtype=int32, numpy=1>"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import tensorflow as tf\n",
"aa = tf.constant(0)\n",
"bb = aa+1\n",
"bb\n"
]
}
],
"metadata": {
"interpreter": {
"hash": "86e2db13b09bd6be22cb599ea60c1572b9ef36ebeaa27a4c8e961d6df315ac32"
},
"kernelspec": {
"display_name": "Python 3.9.7 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}